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Preface

A central theme in the study of dynamic systems is the modelling and control
of uncertain systems. While ‘uncertainty’ has long been a strong motivating
factor behind many techniques developed in the modelling, control, statistics
and mathematics communities, the past decade, in particular, has witnessed
remarkable progress in this area with the emergence of a number of powerful
new methods for both modelling and controlling uncertain dynamic systems. The
specific objective of this book is to describe and review some of these exciting
new approaches within a single volume. Our approach was to invite some of the
leading researchers in this area to contribute to this book by submitting both
tutorial papers on their specific area of research, and to submit more focussed
research papers to document some of the latest results in the area. We feel
that collecting some of the main results together in this manner is particularly
important as many of the important ideas that emerged in the past decade
were derived in a variety of academic disciplines. By providing both tutorial and
research papers we hope to be able to provide the interested reader with sufficient
background to appreciate some of the main concepts from a variety of related,
but nevertheless distinct fields, and to provide a flavor of how these results are
currently being used to cope with ‘uncertainty.’ It is our sincere hope that the
availability of these results within a single volume will lead to further cross-
fertilization of ideas and act as a spark for further research in this important
area of applied mathematics.

It is a huge challenge to completely characterize methods for dealing with
‘uncertainty’ in a concise manner, and it is impossible to document all of the
methods that have emerged over the past decade. The work that is included in
this book is work that to a large extent is due to the widespread availability of
cheap computation power. Identification paradigms based upon non-parametric
statistics and Monte Carlo simulation that were once considered too impractical
to be of interest to engineers, are now the subject of great interest in the com-
munity, and form the basis of many practically useful nonlinear system identifi-
cation techniques. Similarly, complex supervisory (switching) control strategies
that were also once considered too complex to manage in practical situations are
now providing the basis for the control of uncertain and rapidly time-varying dy-
namic systems. Switching control strategies can also be considered Multi-Agent
or Multiple Model systems, although each research area has tended to use dif-
ferent tools, and to apply their methods to different application areas. It is our
hope that this book provides, in particular, a rigorous snapshot of some of the
developments that have taken place in these areas over the past decade, and
also presents state-of-the art research in selected areas of switching and learning
systems. In the context of this overall objective, our aim was to produce a book
that would be of use to a graduate researcher wishing to undertake research in
this vast field, and that would have both introductory chapters and leading-edge
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research, together with example applications of the methods. Toward this aim,
we divided the book into three parts:

Part I introduces the challenges in switching systems for feedback control
systems, with a broad overview by K. Narendra. This is followed by a review of
some of the stability issues that arise in supervisory control systems by Shorten,
Mason and Wulff. Grancharova and Johansen then survey explicit approaches to
constrained optimal control for complex systems, which is of particular interest
for practical application.

Part II covers the use of Gaussian Process priors in feedback control contexts.
Recently it was observed that when the number of submodels in a multiple-model
system increases towards infinity, the system tends towards a Gaussian process.
Gaussian Process priors were also found to be well-suited to nonlinear regression
tasks, and were very competitive with methods such as artificial neural networks.
There has, to date, been very little published work in the combination of Gaus-
sian Process priors in feedback control contexts. This series of papers is intended
to provide an overview of the ways in which the approach can be used, and its
effectiveness. One of the challenges in the use of Gaussian Process priors which
has to be overcome before they are likely to be accepted for control purposes is
their high computational cost for medium to large data sets. Quiñonero-Candela
and Rasmussen introduce Gaussian Process priors, discuss the link with linear
models, and propose a reduced rank GP approach that would reduce the com-
putational load. The topic of efficient GPs for large data sets is continued in
the following chapter by Shi et al. which provides an alternative approach, one
also of interest in applications where the nonlinear system is convolved with
a known system before measurement. An adaptive variant of single-step-ahead
model-predictive control is presented by Sbarbaro and Murray-Smith, showing
how Gaussian Process priors are well suited for cautious control, while simul-
taneously learning about a new plant. In order to use Gaussian processes in
multiple-step-ahead control, the issue of propagation of uncertainty in time-series
predictions needs to be resolved. An approach to this for Gaussian processes is
presented in Girard and Murray-Smith. The following chapter by Kocijan pro-
vides an illustrative example of the use of Girard’s propagation algorithm in a
model-predictive control setting, controlling a simulated pH process.

Part III is composed of papers making more specific research contributions
or applying switching and learning techniques to a range of application do-
mains. Vilaplana et al. present the results of tests of a new controller for cars
equipped with 4-wheel steer-by-wire, and provides a very clear application exam-
ple of the individual channel design approach. This is followed by two chapters
on applications in communications systems: Wong et al. present a geometric
approach to designing minimum-variance beamformers that are robust against
steering vector uncertainties; Xiao et al. consider allocation of communication
resources in wireless communication channels, demonstrating their approach on
the design of a networked linear estimator and on the design of a multivariable
networked LQG controller. Ragnoli and Leithead present a theoretical contri-
bution, investigating inconsistencies in the theory of linear systems. Tresp and
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Yu present an introduction to nonparametric hierarchical Bayesian modelling
with Dirichlet distributions, and apply this in a multiagent learning context for
a recommendation engine, allowing a principled combination of content-based
and collaborative filtering. Roweis and Salakhutdinov investigate simultaneous
localization and surveying with multiple agents, based on the use of constrained
Hidden Markov models, allowing agents to navigate and learn about an unknown
static environment. In the final chapter, Williamson and Murray-Smith present
an application of adaptive nonlinear control methods to user interface design.
The Hex system is a gestural interface for entering text on a mobile device via
a continuous control trajectory. The dynamics of the system depend on the lan-
guage model and change as new letters are entered such that users are supported
without being constrained.

The book documents the work behind presentations at the European Summer
School on Multi-Agent Control, held at the Hamilton Institute in Maynooth,
Ireland, in September 2003. The meeting was partially supported by the EC-
funded research training network MAC: Multi-Agent Control, and included many
of the outcomes of the project. The participants in the summer school brought
insight, techniques and language from very diverse theoretical backgrounds to
bear on a range of leading-edge applications. We hope that the publication of
this book will bring these exciting cross-disciplinary developments to a broader
audience.

October 2004 Roderick Murray-Smith, Robert Shorten
Glasgow and Maynooth
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From Feedback Control to Complexity

Management: A Personal Perspective

Kumpati S. Narendra

Yale Center for Systems Science, Yale University,
New Haven, CT, USA

Abstract. Revolutionary advances in technology have generated nu-
merous complex systems that have become integral parts of our socioe-
conomic environment. The study of such systems – those which contain
many interacting parts – is currently attracting considerable attention.
In this paper, the author retraces his personal attempts, over a period of
four decades, to develop simple models for adaptation, learning, identifi-
cation and control using artificial neural networks, and hybrid systems,
and goes on to describe how they are providing insights into dealing with
complex interconnected systems.

We dance round in a ring and suppose,
But the Secret sits in the middle and knows.

Robert Frost

1 Introduction

The term “system” refers to a collection of components or subsystems that are
interconnected in some fashion to achieve an overall objective. By the control of a
system we mean qualitatively the ability to alter, direct, or improve its behavior,
and a control system is one in which some physical quantities are maintained
more or less accurately around prescribed constant or time-varying values.

1.1 Feedback

The distinctive hallmark of control theory, and its single most valuable contribu-
tion to science, is the concept of feedback (figure 1), which underlies the whole
technology of automatic control.

Every control system, from the simplest (e.g. the thermostat or a simple po-
sitioning servo) to the most complex currently in use (e.g. control of unmanned
air vehicles) utilizes feedback in one form or another. The essence of the concept
involves the triad: measurement, comparison, and correction. That is, measure-
ment of relevant variables, comparison with desired values, and using the errors
to correct behavior. As the complexity of systems increased, simple feedback
of the output grew into the field of estimation and control, and finally to the
control of multivariable, hierarchical, and distributed networks of systems. In

R. Murray-Smith, R. Shorten (Eds.): Switching and Learning, LNCS 3355, pp. 1–30, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. From Feedback to Complexity Management

the latter, which variables to measure, what information to collect, and what
control decisions to make were not often immediately evident. Feedback control
had evolved into complexity management.

1.2 What Makes the Problem Difficult?

Systems theory as taught in academia is methodology-driven. Linear and non-
linear control theory, optimal control and game theory, stochastic, adaptive, and
learning control theories are all members of the effective arsenal of methods de-
veloped over the past eight decades by control theorists. Systems practice as
carried out in industry is problem-driven, and is tremendously diverse. Such
problems are characterized by poor models, distributed sensors and actuators,
high-dimensionality decision spaces, multiple subsystems, and complex infor-
mation patterns. The difficulties that arise in their resolution can be broadly
classified under four headings: (i) complexity, (ii) uncertainty, (iii) nonlinearity,
and (iv) time-variations.

Computational Complexity It has been known for a long time that the
designer’s freedom to propose algorithms is limited by the “curse of dimension-
ality.” With the increasing scope of control systems and the resulting rush to-
wards more sophisticated computational architectures, this is assuming greater
importance.

Uncertainty The fascinating possibilities implied by the term “uncertainty”
were realized by Bellman [1] even as early as 1961. Uncertainty can extend from
approximation of complete knowledge (adaptive control) on the one hand to
approximation of complete ignorance (learning automata) on the other.
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Nonlinearity Even in a purely deterministic context, the presence of nonlin-
earities in a dynamical system makes the control problem very complex.

Time Variations One of the compelling reasons for considering adaptive and
learning methods in the control of practical systems is to compensate for time
variations in their dynamic characteristics. Subsystems may fail, parameters may
drift with time, and disturbances acting on the system may change with time.
Time-varying parameters add substantially to the complexity of the control prob-
lem.

Different areas of systems theory are applicable to the above problem areas.
Yet, the settings in which each of the approaches can be applied are both limited
and disjoint. A combination of the different information processing techniques
is needed to achieve a system that performs satisfactorily in a broad domain.
Complexity management, which deals with such systems, requires the develop-
ment of architectural design principles for creating and managing the interaction
of the different techniques used. It is the author’s belief that dynamical systems
theory offers such a framework.

1.3 A Personal Perspective

An efficient survey of the evolution of control theory from simple feedback to
complexity management is beyond the scope of a single paper, and is more
appropriately the subject for an entire book. The author has tried to circumvent
this difficulty by taking a substantially easier course in this article.

Having participated actively for four decades in the development of several
subfields in control theory, including stability theory, adaptive control, learning
automata, artificial neural networks, and control using multiple models, the au-
thor has attempted to provide the reader with some glimpses of his own search
for insights into the behavior of simple systems, and how they led in course of
time to general principles that were applicable to the control of complex systems.

Only a broad brush, qualitative treatment of the developments in the various
fields is provided, and the emphasis throughout the paper is on simple ideas.

2 Adaptive Control

When a suitable mathematical model of a dynamical system is available, pow-
erful analytical techniques exist for computing a control input based on the
observed outputs of the system. However, in most practical systems, many pa-
rameters are either unknown or vary with time. It is primarily to cope with such
uncertainties that the field of adaptive control theory was developed.

In the 1950s and 1960s the research in the field was focused on gradient-based
methods for adjusting the control parameters to optimize a performance crite-
rion. In 1966, in a landmark paper, Parks [2] demonstrated that such methods
could result in instability, and as a consequence interest shifted to the search
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for stable methods. Starting around the early 1970s the generally accepted phi-
losophy has been to design the controller to assure the stability of the overall
system, and then adjust the parameters of the system within that framework to
optimize performance.

Major advances were made in the field in the 1970s and 1980s and it became
part of mainstream control theory. Systematic methods for designing adaptive
observers and controllers in the 1970s and a detailed investigation of their robust-
ness properties in the 1980s contributed to this. This period also witnessed the
study of multivariable adaptive control and stochastic adaptive control. During
the following years, interest shifted to nonlinear adaptive control and adaptive
control in distributed systems, where many questions remain unresolved and re-
search is now flourishing. In spite of the vast body of literature that exists, the
author believes that a relatively small number of ideas have had a significant
impact on the evolution of the field. This section mainly focuses on these ideas
and describes how they, in turn, led to powerful methods for controlling complex
adaptive systems.

2.1 The Adaptive Control Problem

Given a dynamical system whose parameters are known imprecisely, the adap-
tive control problem can be stated qualitatively as one of designing a controller
which will result in the output following a desired output rapidly and with suf-
ficient accuracy. In the ideal case, when no external disturbances are present,
the theoretical objective is to make the output error tend to zero asymptotically
with time.

Two philosophically different approaches exist for adaptively controlling an
unknown plant. In direct adaptive control, no effort is made to identify the
unknown plant parameters, and the control parameters are directly adjusted
to improve an index of performance. In indirect control, the plant parameters
are estimated online and the control parameters are adjusted based on these
estimates. The methods outlined in the following sections find application in
both direct and indirect control.

Fig. 2. Adaptive Control – Static System.
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Consider the static system shown in figure 2. The input u(t) is assumed
to be bounded, k is an unknown constant, and the output yd(t) = ku(t). The
objective in this simple case is to determine a time-varying function k̂(t) which
approximates k such that the output ŷ(t) = k̂(t)u(t) asymptotically approaches
yd(t).

Since yd(t) = ku(t) and ŷ(t) = k̂(t)u(t), the output error e1(t) = ŷ(t) −
yd(t) = (k̂(t) − k)u(t) = φ(t)u(t), where φ(t) is said to be the parameter error.
The key question is whether k̂(t) is to be increased or decreased. Once this is

decided, the amount by which it is to be changed (or, how large ˙̂
k(t) should be)

has to be addressed. These are the two principal questions of adaptive control.
In the present case, the product of the error e1(t) and the input u(t) yields

the sign of φ(t) (since u2 ≥ 0), if u(t) �= 0. This implies that the direction in
which k̂(t) is adjusted should be opposite to the sign of e1(t)u(t). The rule for
adjusting k̂(t) (also known as the adaptive law) is chosen as

˙̂
k(t) = φ̇(t) = −ηe1(t)u(t), (1)

where η is a positive constant, and is shown to be stable using a Lyapunov
function V (φ) = φ2(t) (whose time derivative is −2ηe2

1(t) ≤ 0).

2.2 A Simple Dynamical System

Fig. 3. Adaptive Control – A Simple Dynamic System.

Figure 3 shows the adaptive control of a first-order dynamical system (referred
to as the plant). A reference model has a transfer function Wm(s) = k

s+a where
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k, a > 0 are unknown. The input and output of Wm(s) are called r(t) (the refer-
ence input) and yd(t), respectively. The plant is described by the equation

ẏ(t) = −â(t)y(t) + k̂(t)r(t), (2)

where â(t)and k̂(t) are adjustable parameters. Once again, the objective is to
determine â(t) and k̂(t) so that y(t) asymptotically approaches yd(t). Defining
the output error as before, e(t) = y(t)− yd(t), the error differential equation can
be written as

ė(t) = −ae(t) + φa(t)y(t) + φk(t)r(t) (3)

where φa(t) and φk(t) are parameter errors (â(t)− a, k̂(t)− k). As in the static
case, it can be shown that the adaptive laws

˙̂
k(t) = φ̇k(t) = −η1e(t)r(t), η1 > 0
˙̂a(t) = φ̇a(t) = −η2e(t)y(t), η2 > 0

result in stable adaptation and that the output error e(t) tends to zero. The
Lyapunov function used to prove this is quadratic in the output error as well as
the parameter errors (i.e. V (e, φa, φk) = 1

2 (e2 + 1
η1

φ2
k + 1

η2
φ2

a).

Remark 1. Once again it is seen that each of the adaptive laws involves the
product of two signals – the global error e(t) and a local signal which is the input
to the parameter being adjusted. This important concept recurs throughout
much of adaptive control theory.

Remark 2. So far we have been considering very simple systems. Both the static
and dynamic cases can be directly extended to more complex situations as shown
below.

2.3 Static Case (A Matrix of Gains)

Let a static system be defined by

yd = Ku (4)

where u(t) ∈ IRr, K ∈ IRm×r, yd(t) ∈ IRm, and the matrix K is unknown. If the
objective is to adjust a matrix K̂(t) ∈ IRm×r such that ‖y(t) − yd(t)‖ → 0 as
t → ∞, each parameter K̂ij should be adjusted according to the rule

˙̂
Kij = −ηei(t)uj(t), η > 0. (5)

If K̃ij = K̃ij(t) − Kij and K̃ = K̂(t) − K, the Lyapunov function used to
prove global stability and convergence of the output errors to zero is V (k̃) =
Trace(K̃T K̃).
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2.4 Dynamic Case (Identification)

Let a linear plant be described by the differential equation

ẋp = Apxp + Bpu, (6)

Ap ∈ IRn×n, Bp ∈ IRn×m, u ∈ IRm, where the matrix Ap is stable. Let an
identification model be represented as

˙̂xp = Amx̂p + [Âp(t) − Am]xp + B̂(t)u

˙̂xp = Amx̂p + (Âp(t) − Am)xp + B̂p(t)u

where the matrix Am is stable and the elements of the time-varying matrices
Âp(t) and B̂p(t) are to be adjusted so that limt→∞ ‖e(t)‖ = limt→∞ ‖x̂p(t) −
xp(t)‖ = 0.

Using a quadratic Lyapunov function in the output and parameter errors, it can
be shown that the adaptive laws

˙̂
Ap = −e(t)xT

p (t)

Ḃp = −e(t)uT (t) (7)

will result in ‖e(t)‖ → 0 as t → ∞.

2.5 Dynamic Case (Control)

In the identification problem discussed above, it was assumed that the plant was
stable so that xp(t)is bounded. We now consider the control problem where the
objective is to adaptively stabilize an unstable plant. More precisely, if the refer-
ence model and the plant are described by the differential equations

ẋm = Amxm + Bmr

x̂p = Apxp + Bmu

where Am ∈ IRn×n is stable, Ap ∈ IRn×n is unstable, and Bm is a known constant
matrix, the objective is to determine the input u(t) such that limt→∞ ‖xp(t) −
xm(t)‖ = 0. We assume that a feedback matrix K� exists such that Ap+BmK� =
Am. To control the system, we choose

u(t) = K̂(t)xp(t) + r(t) (8)

and show that adaptive laws

˙̂
K = −BT

me(t)xT
p (t) (9)

result in a stable overall system with the output of the plant tracking the output
of the reference model exactly as t → ∞.
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2.6 Adaptive Error Models

By the mid 1970s it became clear that all the adaptive laws that had been
generated could be obtained in a unified fashion using error models, so that, given
an adaptive control problem the adaptive laws could be written by inspection.

In the first step in this method, the given adaptive identification or control
problem is recast as an error model which contains only the parameter and
output errors. This was due to the realization on the part of control theorists
in the early 1970s that only these errors were relevant for a proper formulation
of the adaptive control problem. In the context of Lyapunov theory, stability of
the overall system had to be demonstrated in the space of the errors (which was
also the state space of the error models).

In the second step, the problems that were encountered most often in the
field were reduced to three error models. These are shown in figure 4.

Fig. 4. Error Models.

In figure 5, (a) corresponds to the static system described earlier. In the second
case, (b), the input to a known stable dynamical system is φT (t)u(t) and the
output is a vector error signal e(t). In the third case, (c), which is similar to (b),
the input is the same as before, but the output e1(t) is a scalar. However, it is
known that the transfer function of the dynamical system is Strictly Positive
Real ( spr). In all three cases, adaptive control laws for adjusting φ(t) in a stable
fashion have been derived using Lyapunov theory. These are:
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– Model 1: φ̇(t) = −e1(t)u(t)
– Model 2: φ̇(t) = −eT (t)Pbu(t), where P is a suitably chosen positive-definite

matrix, and
– Model 3: φ̇(t) = −e1(t)u(t).

2.7 Adaptive Observers

In the problem discussed earlier, the state vector of the plant was assumed
to be accessible. This made the generation of stable adaptive laws relatively
straightforward. However, in most practical cases, this assumption concerning
the state vector is not valid, and adaptation has to be carried out using only
the accessible outputs. In the 1970s there was a great deal of interest in such
problems. Attempts were made to estimate the state vector of the plant in the
presence of parametric uncertainty. This led to schemes in which both parameters
and state variables were estimated simultaneously, and the devices used were
called adaptive observers.

The proof of stability of adaptive observers was substantially more complex
than those used earlier. It was soon realized that a proper parameterization of
the adaptive observer was needed to generate adaptive laws that were simple
and at the same time would assure stability. As indicated below, the basic ideas
which eventually led to the design of adaptive observers for both single variable
and multivariable systems are both elegant and simple.

Consider the simple example shown in figure 5 (a). The transfer function of
a system is W (s) and the input to the system is θ̃T u(t), where θ̃, u(t) ∈ IRr

and θ̃ is an unknown constant vector which has to be estimated. The output
of the system is e1(t). Using this parameterization, simple laws do not exist for
estimating θ̃ in a stable fashion. However, the system shown in (b) consisting of
r identical transfer functions W (s) with the input u(t) will result in an output
v(t) such that θ̃T v(t) = e1(t), and hence is dynamically equivalent to it. Math-
ematically stated, W (s)θ̃T u(t) and θ̃T W (s)Iu(t) yield the same output. The
parameterization shown in (b) permits θ̃ to be estimated by inspection using the
first error model, since θ̃T v = e1.

Fig. 5. Parameterization for Estimation.
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By reparameterizing the model in (a) so that the vector to be estimated
appears at the output simplifies the problem enormously. Without providing all
the details, the manner in which the solution to the general adaptive observer
problem was obtained is indicated below.

Any nth order linear time-invariant dynamical system can be represented in the
form

ẋ = Ax + gy + bu

y = x1 (10)

where A is a known stable matrix and g, b ∈ IRn are constant vectors. In the
adaptive observer problem g and b are unknown. The output y is the first state
variable of the system. Representing the unknown 2n dimensional vector as

θT = [bT , gT ]

the problem is to estimate θ with θ̂. We note that g and b occur at the input
of the unknown plant. By reparameterizing it, it can be expressed in the form
shown in figure 6, from which θ can be estimated in a straightforward manner.

Fig. 6. The Adaptive Observer.

2.8 The Adaptive Control Problem

Another important result obtained in the late 1970s is shown in figure 7 and
is concerned with the stable control of an unknown plant. Once again, we note
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that proper parameterization of the plant and the controller lets simple adaptive
control laws to be determined by inspection (using error models).

Fig. 7. The Control Problem.

The plant to be controlled is unstable, linear, time-invariant, and of order n,
and has zeros in the open left half of the complex plane. A reference model with
transfer function Wm(s)has a reference input r(t) and output yd(t) which is the
desired output of the plant. The 2n parameters of the plant are unknown and
the objective is to determine a control input u(t) such that yd(t) − y(t) = ec(t)
tends to zero asymptotically with time. In Figure 7, u(t) and y(t) are filtered
through identical (n− 1)th order stable and controllable systems defined by the
pair (Ω, �) to yield outputs ω1(t), ω2(t) ∈ Rn−1. A 2n-dimensional vector ω(t) is
defined as

ωT (t) = [r(t), ωT
1 (t), ωT

2 (t), y(t)], (11)

and a control parameter vector θ ∈ IRn as

θT = [k1, θ
T
1 , θT

2 , θ0], (12)

and the input u(t) to the plant is generated by

u(t) = θT ω(t). (13)
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As a first step, it is shown that a constant vector θ� exists such that when θ = θ�,
the objective of adaptive control is achieved (i.e. error → 0). The second and
crucial step is then to determine how θ is to be adjusted so that θ(t) → θ� as
t → ∞.

Case (i) (Relative degree n� of plant = 1) When the plant has relative
degree unity, the reference model can be chosen to be spr and the problem is
substantially simplified. The error model of the overall system has the form of
error model 3 in figure 4, and the adaptive laws for adjusting the 2n parameters
can be written by inspection as k̇1 = −e1(t)r(t), θ̇1(t) = −e1(t)ω1(t), θ̇2(t) =
−e1(t)ω2(t), and θ̇0(t) = −e1(t)y(t), which is also depicted in figure 7.

Case (ii) (n� ≥ 2) Perhaps the most important contribution to adaptive
control was made in 1980. It consisted in demonstrating that results similar to
those for case (i) could also be obtained for the general case where the relative
degree of the plant is greater than one. For a long time (1977-79) it was thought
by many that the general adaptive control problem could not be solved. But,
once again, a simple strategy suggested by Monopoli [7] enabled three different
groups [8], [9], and [10] to arrive at the solution. In line with the stated objective
of the paper, we shall merely indicate the changes in the controller structure
that yielded this fundamental result, and not consider the detailed arguments
that went into the different proofs.

Consider a transfer function W (s) in series with a control parameter error
vector θ̃(t) as shown in figure 5.

Fig. 8. The Augmented Error.

If W (s) is stable but not spr, as stated earlier, adaptive rules for adjusting
θ̃(t) are not available to make limt→∞ e1(t) = 0. The principal difficulty lies in
the fact that θ̃(t) precedes W (s). Now assume that a network can be constructed
which has the structure in Figure 8).



From Feedback Control to Complexity Management: A Personal Perspective 13

When θ̃(t) is a constant ε1(t) will tend to zero. ε1(t) is called an auxiliary signal.
If the network is connected in parallel to the given plant and e1(t)+ε1(t) = e2(t),
e2(t) is called the augmented error signal and

e2(t) = θ̃(t)v(t)

where v(t) = W (s)u. It is immediately evident that a simple adaptive law can
be generated (using the first error model) as

˙̃θ(t) = −e2(t)v(t). (14)

In [8-10] this adaptive law was shown to result in global stability, and to ensure
that

lim
t→∞ e1(t) = lim

t→∞ e2(t) = 0. (15)

Remark 3. We note that the controller, as described above, contains three copies
of the parameter to be adjusted, i.e. θ̃(t). All of them are adjusted in tandem.
This idea has also found application in other areas of adaptive control.

2.9 Robust Adaptive Control

Soon after the proof of stability of the idealized adaptive control problem was
given, it was shown that such laws are non-robust, i.e. small disturbances could
result in instability. It soon became clear that questions related to the robustness
of adaptive systems needed a great deal more attention, and the field of robust
adaptive control was born.

The three classes of problems that require attention are shown in figure 9.

i. There may be undesired disturbances affecting the performance of the sys-
tem.

ii. Models of the plant to be controlled are rarely perfect and the unmodeled
dynamics may have a destabilizing effect.

iii. The parameters of the plant, which were assumed to be constant in the ideal
case, may vary with time.

In all cases, the control laws may have to be modified so that the boundedness
of all the signals in the system is preserved.

During the 1980s numerous contributions were made to robust adaptive con-
trol. Robust algorithms were developed for both direct and indirect controllers
and deterministic and stochastic plants. In spite of the very large number of
publications in the area and the ingenious solutions proposed, very few elegant
results exist as in the ideal case which provide deep insights into the nature of
adaptation. As a result, we shall not discuss robust adaptive control any further
but merely assume that the reader can choose an appropriate algorithm for his
needs.
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Fig. 9. Robust Adaptive Control Problems.

2.10 Nonlinear Adaptive Control

In the late 1980s and early 1990s considerable work was done on the adaptive
control of special classes of nonlinear systems. The latter were assumed to con-
tain known nonlinearities but with unknown parameters appearing linearly. The
adaptive control of such systems is described below.

ẋ1 = f0
1 (x1, x2) + θT f1(x1, x2)

ẋ2 = f0
2 (x1, x2, x3) + θT (x1, x2, x3)

...
ẋn =f0

n(x1, . . . ,xn)+θT f1(x1, . . . ,xn)+(g0(x1, . . . ,xn)+θT g(x1, . . . ,xn))u (16)

A nonlinear dynamical system is represented by the equations 16. It is assumed
that all the state variables xi(t) of the system are accessible and that the non-
linear functions fi are known. The constant parameter vector θ are unknown,
making the problem adaptive. The objective is to determine the control input
u(t) such that x1 asymptotically tracks a desired signal yd(t).

The determination of explicit quadratic Lyapunov functions to prove the sta-
bility of the adaptive system has been shown in [12] and [13] and is theoretically
very attractive. However, the adaptive laws are quite complex even for rela-
tively low-order systems, making them not very attractive for practical adaptive
control.



From Feedback Control to Complexity Management: A Personal Perspective 15

2.11 Summary

In summary, the principal ideas to emerge from four decades of research in adap-
tive control are that algebraic and analytic methods can be suitably combined
to generate intuitively appealing and simple adaptive laws for complex systems.
The existence of a control parameter vector which can achieve the desired objec-
tive must first be established. This is the algebraic part. The parameterizations
of the plant and controller play an important role here. In the analytic part, rules
for adjusting the control parameter vector are developed. These depend upon a
global error signal and a local signal related to the parameter. Proving stability
of the overall system is rarely simple or straightforward. However, the results
obtained thus far suggest that it may be possible to derive similar adaptive laws
even for complex interconnected systems.

3 Learning Automata

In the late 1960s, while the author was working on adaptive control systems, he
was introduced to an entirely different paradigm for controlling complex systems
in the presence of uncertainty through the contributions of various Russian re-
searchers including Tsetlin and Krylov. For the next twenty years, (1967-1987)
he carried out research with his graduate students concurrently in these comple-
mentary areas, which culminated in the publication of two books [3,14] in 1987.
In this section, the basic ideas of the learning automata approach are introduced.

In the adaptive control systems described in the previous section it was as-
sumed that a mathematical description of the process to be controlled was avail-
able, but that the parameters of the model were unknown. While interacting
with industrial laboratories, the author frequently encountered systems where
the uncertainties were of a higher order and no good models could be developed
for them. All that was known was that one out of a finite number of actions
could be chosen at any instant to which the plant would probabilistically yield
either a good (success) response or a bad (failure) response. The underlying
probabilities being unknown, the efficacy of each action could be concluded by
actually interacting with the system.

While both adaptive control and learning automata involve feedback, there
are fundamental differences between them. Though both involve iterative pro-
cedures, updating is done in parameter space in one method and in probability
space in the other. Also, the objective in the latter case is to optimize the math-
ematical expectation of a random functional by the choice of one action out of a
finite set. Further, the action space need not be a metric space and hence global
rather than local optima can be obtained.

As in the case of adaptive control, our interest in this paper will not be in the
detailed discussion of the numerous results in the field, but rather to indicate
how simple ideas evolved so that they could be applied to complex systems.
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3.1 The Environment and the Automaton

The basic components of the learning automaton are shown in figure 10. The
random environment has a finite input set α = {α1, α2, . . . , αr}, a finite output
set {0, 1} where 0 is called failure and 1 success, a set di, i ∈ {1, 2, . . . , r} of
reward probabilities corresponding to actions αi, and a learning algorithm (or
automaton) which determines the rule by which an action is to be chosen at
instant (k+1) on the basis of all the observations up to time k. The combination
of the automaton and the environment is called the learning automaton.

Fig. 10. The Learning Automaton.

In the stochastic learning automaton shown in figure 10, the learning algorithm
is an iterative probability-updating scheme. If P (n) is the vector of probabilities
of the actions at stage n, and an action α(n) = αi is chosen resulting in an
output β(n) = βj, the algorithm has the form

P (n + 1) = T [P (n), α(n), β(n)]. (17)

The objective then is to determine T such that the overall system has desired
properties, e.g. the vector P (n) converges to P � = [0, . . . , 0, 1, 0, . . . , 0]T , where
limn→∞ Pj(n) = 1 and corresponds to the optimal action αj (that for which
dj = maxi{di}).

3.2 Learning Algorithms

The general philosophy of the learning algorithm is to increase the probability of
an action αj if it results in a success and decrease its probability if it results in
a failure, as shown here:

Pj(n + 1) = Pj(n) + g[P (n)](success)
Pj(n + 1) = Pj(n) − h[P (n)](failure) (18)
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How to choose g and h and how the probabilities of the other actions are to be
altered is the mathematical problem to be resolved.

3.3 Performance Measures

If the action probabilities are Pi(k), i ∈ {1, 2, . . . , r} at an instant k, the average
probability of success at that instant in η(k) =

∑r
i=1 Pi(k)di. If the actions are all

chosen with the same probability Pi(k) = 1
r (for all i), the strategy is called pure

chance, and the corresponding probability of success in η0(k) = 1
r

∑r
i=1 di. The

learning algorithm is said to be “expedient” (a term from the Russian literature)
if

lim inf
k→∞

E[η(k)] > η0 (19)

(or the outcome is better than chance). Optimality implies that in the limit, the
action corresponding to the reward probability dmax is chosen with probability
one, or

lim inf
k→∞

E[η(k)] = dmax. (20)

A learning algorithm is said to be absolutely expedient if

E[η(k + 1)|P (k)] ≥ η(k) (21)

with probability one. The sequence {P (k)}k≥0, where P (k) is the vector of ac-
tion probabilities, is a homogeneous Markov process with stationary transition
function. P (k) lies in the r-dimensional simplex Sr where

Sr =

{
P |

r∑
i=1

Pi = 1, 0 ≤ Pi ≤ 1

}
(22)

and Vr ⊂ Sr is defined as the set of r unit vectors ei, i.e.

Vr = {ei|i ∈ {1, 2, . . . , r}(the ith unit vector)} (23)

3.4 Absorbing and Ergodic Algorithms

If {P (k)} converges to Vr with probability one, the algorithm used is called an
absorbing algorithm. In this case, one action is chosen with probability one as
k tends to infinity. If, on the other hand, {P (n)} converges in distribution to
a random variable P � ∈ Sr, independent of the initial stage, it is said to be
ergodic.

3.5 A Summary of Important Results

The following are some of the important results which were obtained over a
twenty-year period. They are simple enough to be easily modified for use in
complex control problems.



18 Kumpati S. Narendra

LRI and LRP Schemes If an automaton has two actions with only success
and failure as outputs (a P model), it was shown independently by Norman
and Shapiro [15] and Narendra [16] that a linear reward-inaction scheme (LRI)
is absorbing (in such a scheme, the probability of an action is increased if the
output is a success and is left unaltered if the output results in a failure). The
linear reward-penalty scheme (LRP ) was shown to be ergodic and absolutely
expedient.

LRI Scheme ε-optimal In an LRI scheme the probability of convergence to
the optimal action can be made as close to one as desired by the choice of the
step size.

P, Q, and S Models The results of the two action automata have been ex-
tended to the case of r actions, where r is any positive integer. Also, the results
have been extended to cases where the automaton has a finite number of values
(a Q model) or a continuous set of values (an S model).

Fig. 11. Multiple Environments.

Multiple Environments If an automaton acts in multiple environments at the
same time (figure 11), and the average output of all the environments is used as
the output of a composite environment, then the latter can be made ε-optimal.

Hierarchy of Automata Learning automata can be connected in an hierar-
chical fashion (figure 12). In this case, the action set of an automaton at one
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Fig. 12. Hierarchical Automata.

level is a finite set of automata at the level below it. The actions of the last layer
of an automata act in an abstract environment whose output is a success or a
failure. It has been shown that the parameters of the algorithms at every level
can be chosen so that the overall system is ε-optimal.

Games of Automata The most significant results with great theoretical conse-
quences and practical utility have been obtained for learning automata operating
in a game context. Consider the system shown in figure 13. N automata operate
simultaneously in a random environment E. The number of actions available to
each automaton may be different. Each automaton is also unaware of the other
automata, their number, their action sets, and the learning algorithms they use.
It acts exactly as if it were operating in a stationary random environment.

The response of the environment is β(k) and depends upon all the actions
acting on it at the instant k. However, each automaton updates its action proba-
bility vector on the basis of the observed global output β(k). Given the strategies
of the individual automata, the objective is to determine the asymptotic behav-
ior of the overall system. It has been shown [17] that if all the automata use the
LRI scheme, the overall system will be absolutely expedient and can be made
ε-optimal by the choice of the step sizes of the individual automata.

From the above discussion it is clear that learning automata may prove very
attractive for modeling the interactions of many rational players in a dynamic
situation. Further, through reformulation of the basic environment, phenomena
such as Nash equilibration, Pareto optimality, coalition formation, and implicit
bargaining can be interpreted meaningfully in situations modeled by automata
games.
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Fig. 13. Games of Automata.

3.6 Time-Varying Environments

So far, we have assumed that the reward probabilities of the environment are
constant. However, in practice, if an action is used often, (e.g. a specific route
in a routing problem) the probability of failure will increase for that action.
Using simple qualitative arguments like these, learning automata were analyzed
in environments when the reward probabilities of the environment are functions
of the action probabilities. It was shown that the system would evolve to an
equilibrium state in which either penalty probabilities or penalty rates due to
different options are equalized. [18]

3.7 Estimation Algorithms

In the case of both adaptive systems and learning automata, the updating of
the relevant vectors was carried out on the basis of the instantaneous errors.
Not surprisingly, questions arose in both fields as to whether one could not
do better by using all past information to make a decision at every instant.
Instantaneous responses of the system were used for mathematical tractability
– to prove stability in adaptive control and to prove stochastic convergence in
learning automata. Modifications of the algorithms taking into account past
data led to integral algorithms in adaptive control and estimation algorithms
in learning automata. While the use of past information improves performance
significantly in many cases, it also makes proofs of stability and convergence
substantially more difficult.

3.8 Summary

Learning deals with the ability of systems to improve their response based on past
experience. In the descriptive learning paradigm, as well as the learning automa-
ton treated in this section, the decision maker updates its strategy for choosing
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actions on the basis of elicited responses. The learning automaton, which is sim-
ple in structure, easily interconnected with other automata, stochastic in nature,
and shown to be optimal in hierarchical and distributed structures, appears to
have the flexibility and analytical tractability to deal with systems in which large
uncertainty exists.

At the same time, since an individual automaton uses very little prior infor-
mation, its speed of response is, in general, slow, and hence it is ideally suited
for situations in which decisions have to be made over longer time scales than
the adaptive control systems treated in 2.

4 Artificial Neural Networks for Control

The best-developed part of control theory deals with linear systems and power-
ful methods for designing controllers for such systems were available even three
decades ago. However, as applications became more complex, control theorists
had to deal increasingly with nonlinear systems. The resulting problems called
for both theoretical principles for designing controllers and practical methods for
implementing them. As a consultant to industrial laboratories in the 1980s, the
author came across many ingenious schemes for controlling complex nonlinear
systems which required appropriate models and methods for the practical real-
ization of controllers. That was when he became interested in artificial neural
networks as components in dynamical systems.

Fig. 14. Multilayer feed-forward neural network.

From a system-theoretic point of view, artificial neural networks are prac-
tically implementable, convenient parameterizations of nonlinear maps. During
the late 1980s, conclusive proofs were given by numerous authors that multi-
layer feedforward networks are capable of approximating, in a very precise and
satisfactory sense, any continuous function on a compact set. As a result, such
networks found wide application in many fields for both function approximation
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and pattern recognition. In 1990, following extensive simulation studies, the au-
thor proposed with his graduate student [19] that neural networks should also
be used in dynamic situations, particularly for identification and control. Neural
networks, it was argued, are ideally suited to cope with complexity, uncertainty,
and nonlinearity – three of the four difficulties mentioned in the introduction –
encountered in complex control problems.

For neural networks to be successful in function approximation and pattern
recognition, it must be assumed (or theoretically demonstrated) that a nonlinear
map exists between the inputs and the outputs. In control problems also, where
it is the approximation capabilities of the networks that makes them attractive,
it first has to be demonstrated that suitable dynamic nonlinear maps exist.
Hence, proving the existence of the appropriate maps and developing methods for
approximating them, on-line or off-line, constitute the two parts of neurocontrol.

4.1 Nonlinear Dynamical Systems

Let Σ be a nonlinear dynamical system to be controlled, and let it be represented
by the discrete-time state equations∑

: x(k + 1) = f [x(k), u(k)], f(0, 0) = 0

y(k) = h[x(k)], h(0) = 0 (24)

where u(k), y(k) ∈ IRm, x(k) ∈ IRn and represent the input, output, and state
of Σ at instant k, and f and h are smooth functions. Qualitatively, our objective
is to choose u(k) so that all the signals in the system remain bounded and the
output y(k) tracks a specified desired signal yd(k). It is worth noting that the
problem as stated here is merely the nonlinear version of the adaptive control
problem discussed in 2. As in that problem, our interest is in situations where
the equations describing the plant are not known a priori, as well as in those
cases where external perturbations are also present.

From a purely mathematical point of view, the precise control of a nonlinear
dynamical system is a formidable problem. It becomes substantially more diffi-
cult when uncertainty is also present in the system. An approach that proved
successful in the mid 1990s was to confine attention to the class of nonlinear
systems whose linearizations are well-behaved around the equilibrium state. In
such cases the implicit function theorem can be used to assure the existence of
appropriate nonlinear maps in some domain containing the equilibrium state.
Neural networks can then be used to approximate these maps using the data
available concerning the system.

As shown in the following subsections, many of the ideas, developed over
a period of three decades for linear adaptive control systems, were successfully
extended to the control of nonlinear systems using the above procedure during
the 1990s.
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4.2 Nonlinear System Representation

Let a single-input, single-output nonlinear system of dimension n be represented
by the state equations 24. In the simple case where the state variables x(k) of the
system are accessible, the maps f and h can be estimated separately using artifi-
cial neural networks and a gradient-based parameter adjustment method such as
backpropagation. If, however, only the outputs of the system can be measured, a
suitable input-output representation of the plant is needed. An example of such
a representation is the narma (nonlinear auto-regressive and moving-average)
model, where the output y at time k+1 depends upon the values assumed by both
the input u and the output y at the previous n instants of time, i.e.

y(k + 1) = F [y(k), y(k − 1), . . . y(k − n + 1), u(k), . . . u(k − n + 1)] (25)

Identification in this context corresponds to approximating the function F . A
neural network is particularly suited to carry out this approximation if data in
the form of input values and output values are available.

4.3 Control

Assuming that a suitable model of the plant is available in the form

ŷ(k + 1) = F̂ [y(k), . . . y(k − n + 1), u(k), . . . u(k − n + 1)] (26)

the question that arises is whether a feedback controller can be designed so that
limk→∞ ‖ŷ(k) − yd(k)‖ = 0, where yd(k) is a reference signal. As mentioned
earlier, a neural network can be used for this purpose only if it is known that a
suitable mapping exists between the available signals and the input u(k). (The
control input u(k) is the output of the controller that has to be designed.) In [20]
it is shown that if the plant has a well-defined relative degree and zero dynamics
that are asymptotically stable and the desired output yd(k+1) is known at time
k, then a mapping φ exists such that

Φ[y(k), . . . y(k − n + 1), yd(k + 1), u(k − 1), . . . u(k − n + 1)] = u(k). (27)

Hence, using y(k) and its past values, the past values of u(k) and the desired
signal yd(k+1), the control input u(k) can be generated to achieve exact asymp-
totic tracking. (Equations 25-27 can be suitably modified so that the same results
also carry over to the more general case where the plant has a relative degree
d.)

The simultaneous identification and control of the nonlinear system is shown
in Figure 15. The structure of the overall system is strongly motivated by that
used in the adaptive control of linear time-invariant systems.

Using both the state representation of the nonlinear plant Σ in equation 24
and the input-output representation in equation 25, several results have been
derived for the control of Σ. These include stabilization around the origin, set-
point regulation, and asymptotic tracking of a given reference signal. In all cases,
the linearization ΣL of the system plays a central role. Once this was realized,
most of the results that are well-known in linear adaptive control were extended
to nonlinear systems.
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Fig. 15. Control of Nonlinear Dynamical Systems with Neural Networks.

4.4 Summary

The parallel distributed nature of neural networks makes them attractive for
coping with complexity. Their ability to approximate nonlinear maps, and the
availability of methods for adjusting parameters on the basis of input-output
data makes them particularly attractive when unknown nonlinearities are present
in a system.

For a neural network to be used in a given context, a mapping must be shown
to exist which achieves the desired objective. The neural network is merely used
to approximate the nonlinear map. In dynamical systems, nonlinear maps have
been derived for the representation of the system as well as the controller, using
the implicit function theorem. Hence, all the results derived thus far are valid
only in a neighborhood of the equilibrium state.

5 Adaptive Control Using Multiple Models

Among the four reasons that were given in the introduction (i.e. complexity,
uncertainty, nonlinearity, and time-variations) which make the control of com-
plex systems difficult, we have seen in the preceding sections that adaptation and
learning can deal with uncertainty, while neural networks help to cope with com-
plexity and nonlinearity. The fourth member of the ensemble, i.e. time-variations,
however, has not been addressed thus far.

From the very beginning four decades ago, adaptive control theorists have
been interested in adaptation in changing environments. However, for the sake
of mathematical tractability, they confined their attention to time-invariant sys-
tems with unknown parameters. The accepted philosophy was that if an adaptive
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system was fast and accurate when the unknown plant parameters were constant,
it would also prove satisfactory when the parameters varied with time, provided
that the variation occurred on a relatively slow time scale. Based on this phi-
losophy, numerous globally stable and robust control algorithms were derived as
described in 2, and simulation studies verified that the above assumptions were
indeed true if the initial parameter errors were small.

5.1 Reasons for Using Multiple Models

The simulation studies also indicated that when there are large errors in the
initial parameter estimates, the tracking error is quite often oscillatory with
unacceptably large amplitudes in the transient phase. It was to cope with such
situations that the author and his graduate student proposed multiple-model
based adaptive control in 1992. [21]

Many other reasons exist besides improving transient response for using mul-
tiple models in time-varying environments. A model is merely a representation
of the system’s behavior in a convenient form, and simplifying assumptions are
invariably made to assure mathematical tractability. The best choice of assump-
tions is different for each system and regime of operation, and thus multiple
models arise naturally. Multiple models may also be needed for redundancy and
robustness. A third reason is to switch between different models to realize their
combined advantages.

5.2 The Structure of the Control System

The control of a linear dynamical system using multiple models is shown in Fig-
ure 16. The plant P to be controlled has an input u and an output y. A reference
model provides a desired output yd, and the objective of control is to make the
control error ec = (y − yd) tend to zero. M1, M2, . . . , MN are N identification
models which are used in parallel with the plant to estimate its parameters.
The outputs of the N models are ŷi, i ∈ {1, 2, . . . , N} and the estimation error
ei = ŷi − yi is used to adjust the parameters of the ith model. Corresponding
to each model Mi is a controller Ci, and Mi together with Ci can achieve the
desired objective. At every instant, based on a switching criterion, one of the
model controller pairs (Mj , Cj) is chosen, and the output uj of Cj is used as the
input at that instant.

Given the prior information about the plant (linear, nonlinear, stochastic,
etc.) the design problem is to choose the models Mj and the controllers Cj

together with the rules for switching between them, and to demonstrate that
the overall system will be stable.

5.3 Tuning, Switching, Switching and Tuning

In classical adaptive control theory (which uses a single model), the parameters
of the identification model are changed incrementally, and this results in incre-
mental changes in the controller parameters. When multiple models are used, all
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Fig. 16. Control Using Multiple Models.

the identification models are updated incrementally, but the control parameters
may change discontinuously due to switching. Thus, the multiple-model based
approach frees the control theorist from the traditional view that all adaptation
has to be incremental.

Switching is needed for reacting to rapidly changing plant characteristics
and avoiding catastrophic failures. Tuning, which is incremental in nature, is
relatively slow, and as its name suggests, is desirable for gradually improving
the performance of the system. Consequently, both switching and tuning play
important roles in the adaptive control of dynamical systems using multiple
models.

5.4 Recent Results

The stability of the overall system is of paramount importance in multiple-model
adaptive control, as it is in any feedback control system. For linear deterministic
and stochastic systems, as well as special classes of nonlinear systems, the stabil-
ity of the multiple-model based adaptive control has been demonstrated. From
a practical standpoint, if the parameters of the identification models are located
in regions which are close to those which the time-varying plant parameters can
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assume, the adaptive controller is found to be very effective. Hence, the location
of the models Mi, i ∈ {1, 2, . . . , N} becomes very important.

5.5 Summary

The success of adaptive control in any specific context depends upon the values
of the parameter estimates from which adaptation commences. Multiple-model
based adaptive control provides multiple choices for initial conditions and hence
is ideally suited for situations where plant parameters vary rapidly and over
large domains in parameter space. The success of the approach in such contexts
depends upon the location of the fixed models. Work is currently in progress to
achieve this in a systematic fashion.

6 Control of Complex Systems

As stated in the introduction, the simple ideas contained in 2-5 have been applied
to numerous systems, both simple and complex. Sometimes a single approach
such as adaptation or learning may suffice. In more complex cases, combinations
of the techniques may be needed. In controlling systems with even greater com-
plexity and uncertainty, the different approaches have to be combined judiciously,
and the success of such applications will be limited only by the imagination of the
designer. In this section we describe briefly a few problems where the methods
described have been applied.

6.1 Use of a Single Paradigm

Adaptive control has been applied to a vast number of problems in engineering
where good models of the processes to be controlled exist and the uncertainty is
primarily in the values of the parameters. Learning automata (or similar proba-
bilistic learning methods) are attractive when the level of uncertainty is substan-
tially higher and randomness is the dominant attribute of the systems. These
methods have been applied successfully to routing in networks, flow control,
task scheduling in computer networks, data compression, relaxation labeling,
and pattern recognition.

When nonlinearities play a major role, and analytical models are practically
nonexistent, but vast amounts of input-output data are available – as in many
problems in process control, robotics, manufacturing, and medical instrumen-
tation – neural networks become ideal candidates as identifiers and controllers.
In robotics, they have been used in manipulation control, contact control and
grasping; in aeronautics, for fault detection and control re-configuration, and in
robotics, for autonomous navigation. All these are complex nonlinear multivari-
able systems which call for nonlinear controllers to meet stringent performance
specifications.

Large variations in load, sudden changes in the environment, unanticipated
failures in aircraft, and transition control in chemical processes are examples
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of systems in which parameters vary rapidly with time. Multiple-model based
adaptive control has found application in such problems.

6.2 Combining Different Paradigms

Three engineering problems where two of the paradigms suggested earlier were
combined to develop efficient controllers are briefly described below.

Operation in Many Regimes When nonlinear dynamical systems operate in
many regimes, resulting in rapid variations of parameters, the controllers need
to cope with both nonlinearities and time-variations. Control theorists resorted
to multiple neural network models for identification and control.

Hierarchical Control in Robots Hierarchical control is ubiquitous in control
practice. Two typical examples are robot control and vision-based control. In
robot control, the highest level invariably operates on a slower time scale than
the rest and decisions are generally probabilistic in nature and based on past
performance. Learning appears to be an appropriate technique at this level. Arm
control, hand control, and joint control are carried out on a much faster time
scale, and robust and adaptive control are the proper choices at these levels.

Learning Automata and Neural Networks Learning schemes operating
in random environments can determine, in course of time, the optimal actions
at various operating points. Neural networks, on the other hand, are extremely
good at interpolation. By combining neural networks with the data provided
by learning automata, the optimal actions to be taken in points in continuous
domains can be determined.

6.3 Decentralized Control

In all the examples discussed thus far, the control input was generated by a
single centralized controller to control a single plant or process in the presence
of uncertainty. At the present time, the focus of research in systems theory is on
systems in which many subsystems interact, and decision making is distributed
among many controllers or agents. The controllers have only partial information
about the other subsystems. Decentralized decision making is ubiquitous in both
natural (biological) and artificial (man-made) systems and decentralized control
is becoming essential in many industrial problems.

Economic systems, communication networks, transportation systems, power
systems, and unmanned air vehicles (uavs) are typical examples of complex in-
terconnected systems with large uncertainties. For example, considering uavs,
the systems have to be robust, adaptive, and self-learning. They have to navigate
and land autonomously, be maneuverable, agile, and operate over broad altitude
regimes. They must be capable of collecting, collating, and sharing available
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information for performing cooperative tasks efficiently. Such complex require-
ments are common to most large decentralized control systems. How to model
the overall system, how to choose the appropriate control methodology for each
part of the system, and how to assure that the overall system will be stable are
some of the challenges faced by the designer.

6.4 Biological Motivation

Biological systems are known to cope easily and effectively with changes in their
environments. In the past four decades, as interest shifted to the control of
complex systems with increasing uncertainty, efforts were naturally made to in-
corporate in them characteristics similar to those found in living systems. This
resulted in the introduction of words such as adaptation, learning, artificial in-
telligence and self-organization, (topics treated in this paper) into the control
literature. With increased interest in the decentralized control of complex man-
made systems in the 21st century, it is generally recognized by the control com-
munity that, once again, concepts borrowed from natural systems will be needed
to address the problems that are arising.

Examples abound in biological systems where decisions are made in a decen-
tralized fashion and there is seamless integration of the activities of the many
agents involved. Through evolution, ants, wasps, bees, fish, and the like have
developed extremely efficient methods for finding food, dividing labor, feeding
the group, responding to external challenges, and spreading alarm – all of which
have applications in engineering systems. This reveals that nature, through evo-
lution, has come up with novel solutions to complex problems, which need to
be understood. It is the author’s belief that underlying the observed complex
behavior of biological communities are simple rules of interaction of individual
organisms, just as the stable adaptive control of a complex multivariable system
can be traced back to the adaptive properties of a single parameter, and the
optimal decision making in automata games can be related to the convergence
properties of a simple linear reward-inaction scheme.
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Abstract. Recent research on switched and hybrid systems has resulted
in a renewed interest in determining conditions for the existence of a
common quadratic Lyapunov function for a finite number of stable LTI
systems. While efficient numerical solutions to this problem have existed
for some time, compact analytical conditions for determining whether or
not such a function exists for a finite number of systems have yet to be
obtained. In this paper we present a geometric approach to this problem.
By making a simplifying assumption we obtain a compact time-domain
condition for the existence of such a function for a pair of LTI systems.
We show a number of new and classical Lyapunov results can be obtained
using our framework. In particular, we demonstrate that our results can
be used to obtain compact time-domain versions of the SISO Kalman-
Yacubovich-Popov lemma, the Circle Criterion, and stability multiplier
criteria. Finally, we conclude by posing a number of open questions that
arise as a result of our approach.

1 Introductory Remarks

The Kalman-Yacubovich-Popov lemma has played an important role in the de-
velopment of adaptive control algorithms. The classical KYP lemma is closely
related to the existence of a common quadratic Lyapunov function for Lur’e type
systems and is typically expressed in the form of a constraint on the Nyquist
curve of a transfer function. In this paper we present a result on the existence of
a quadratic Lyapunov function for a class of time-varying systems [1]. As well as
leading to new results in stability theory, we also show that our result reveals an
interesting connection between the time and frequency domain [2, 3] for SISO
systems. We use this connection to derive a compact time-domain version of the
KYP lemma for SISO systems. Further, we show that for SISO systems, time-
domain versions of many multiplier criteria can be obtained directly from their
frequency domain counterparts [4]. Finally, we present a number of interesting
open questions that arise as a result of our work.

2 Mathematical Preliminaries

Throughout, the following notation is adopted: IR and IC denote the fields of real
and complex numbers respectively; IRn denotes the n-dimensional real Euclidean
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space; IRn×n denotes the space of n×n matrices with real entries; xi denotes the
ith component of the vector x in IRn; aij denotes the entry in the (i, j) position
of the matrix A in IRn×n.
The main results of this paper are based upon Theorem 1. The concepts of weak
quadratic Lyapunov functions, strong quadratic Lyapunov functions, and matrix
pencils, are central to the statement of this theorem.

(i) Strong and weak common quadratic Lyapunov functions : Con-
sider the set of LTI systems

ΣAi : ẋ = Aix, i ∈ {1, 2, ...M}. (1)

where M is finite and the Ai, i ∈ {1, 2, ...M}, are constant Hurwitz matrices
in IRn×n (i.e. the eigenvalues of Ai lie in the open left half of the complex
plane and hence the ΣAi are stable LTI systems). Let the matrix P = PT >
0, P ∈ IRn×n, be a simultaneous solution to the Lyapunov equations

AT
i P + PAi = −Qi, i ∈ {1, 2, ...M}. (2)

Then, V (x) = xT Px is a strong quadratic Lyapunov function for the LTI
system ΣAi if Qi > 0, and is said to be a strong CQLF for the set of LTI
systems ΣAi , i ∈ {1, ..., M}, if Qi > 0 for all i. Similarly, V (x) is a weak
quadratic Lyapunov function for the LTI system ΣAi if Qi ≥ 0, and is said
to be a weak CQLF for the set of LTI systems ΣAi , i ∈ {1, ..., M}, if Qi ≥ 0
for all i.

(ii) The matrix pencil σγ[0,∞)[A1, A2] : The matrix pencil σγ[0,∞)[A1, A2],

for A1, A2 ∈ IRn×n, is the parameterised family of matrices
σγ[0,∞)[A1, A2] = A1 + γA2, γ ∈ [0,∞). We say that the pencil is
non-singular if σγ[0,∞)[A1, A2] is non-singular for all γ ≥ 0. Otherwise the
pencil is said to be singular. Further, a pencil is said to be Hurwitz if its
eigenvalues are in the open left half of the complex plane for all γ ≥ 0. It is
important for much of what follows to note that when A1 is non-singular,
the pencil σγ[0,∞)[A1, A2] is non-singular if and only if the product A−1

1 A2

has no negative eigenvalues.

The relationship between a matrix, its inverse, and a quadratic Lyapunov func-
tion will arise in our discussion. In this context we note the following fundamental
result.

(iii) The stability of ΣA and ΣA−1 [5, 6]:
Consider the linear time invariant systems

ΣA : ẋ = Ax,

ΣA−1 : ẋ = A−1x,

where A ∈ IRn×n is Hurwitz. Then, any quadratic Lyapunov function for
ΣA is also a quadratic Lyapunov function for ΣA−1 .
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Comment : Suppose that V (x) is a CQLF for the two stable LTI systems
ΣA1 , ΣA2 . It is a simple exercise in algebra to verify that the same function
V (x) will be a quadratic Lyapunov function for the systems Σσγ[0,∞)[A1,A2] and
Σσγ[0,∞)[A1,A−1

2 ] for all γ ∈ [0,∞). Hence, σγ[0,∞)[A1, A2] and σγ[0,∞)[A1, A
−1
2 ]

are both necessarily Hurwitz for all γ ∈ [0,∞). Thus the non-singularity of these
two pencils is a necessary condition for the existence of a CQLF for the systems
ΣA1 , ΣA2 .
Finally, the following observations are useful in deriving the results in Section
5. Lemma 2.1 is a well known result from linear algebra and Lemma 2.2 is a
generalisation of a result used by Kalman in [7].

(iv) Lemma 1. [8] Let A ∈ IRn×p, B ∈ IRp×n, and let In denote the n × n
identity matrix. Then,

det[In − AB] = det[Ip − BA]. (3)

(v) Lemma 2. [7] Let A ∈ IRn×n, and c, b ∈ IRn×1. Then, the numerator and
denominator polynomials of the rational function,

1 + Re{cT (jωIn − A)−1b} =
Γ (−ω2)
|M(jω)|2 ,

are given by

|M(jω)|2 = det[ω2In + A2],
Γ (−ω2) = (1 − cT A(ω2In + A2)−1b)det[ω2In + A2]. (4)

When the matrix A is Hurwitz, det[ω2In + A2] = det[A]det[ω2A−1 + A] �=
0 ∀ ω ∈ IR.

3 A Result on Common Quadratic Lyapunov Functions

The following theorem considers pairs of stable LTI systems for which no strong
CQLF exists, but for which a weak CQLF exists with Qi, i ∈ {1, 2}, of rank
n − 1 in (2), and establishes a set of easily verifiable algebraic conditions, that
are satisfied when such a weak CQLF exists1. It will be later shown that these
conditions are found to play an important role in the question of the existence
of strong CQLF’s for general LTI systems.

Theorem 1. Let A1, A2 be two Hurwitz matrices in IRn×n such that a solution
P = PT > 0 exists to the non-strict Lyapunov Equations

AT
1 P + PA1 = −Q1 ≤ 0, (5)

1 This situation corresponds to two stable LTI systems that are on the boundary of
having a CQLF as depicted in Figure 1.
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1A
L 2A

L

Fig. 1. The sets LAi are defined by {P = PT > 0 : AT
i P + PAi ≤ 0}

AT
2 P + PA2 = −Q2 ≤ 0, (6)

for some positive semi-definite matrices Q1, Q2 both of rank n− 1. Furthermore
suppose that no solution exists to the strict Lyapunov equations (2). Under
these conditions, at least one of the pencils σγ[0,∞)[A1, A2], σγ[0,∞)[A1, A

−1
2 ] is

singular, and at least one of the matrix products A1A2 and A1A
−1
2 has a real

negative eigenvalue.

Outline of proof: As Q1 and Q2 are of rank n − 1, there are non-zero vectors
x1, x2 such that

xT
1 Q1x1 = 0 (7)

xT
2 Q2x2 = 0. (8)

The proof of Theorem 3.1 is split into two main stages.
Stage 1 : The first stage in the proof is to show that if there exists a positive
definite matrix P satisfying

xT
1 PA1x1 < 0 (9)

xT
2 PA2x2 < 0 (10)

then a strong positive definite solution exists to (2).
Note that as xT PA1x is a scalar for any x, we can write xT Q1x = 2xT PA1x.
The same obviously holds for xT Q2x.
Now assume that there is some P satisfying (9), (10), and, firstly, consider the
set

Ω1 = {x ∈ IRn : ‖x‖ = 1 and xT PA1x ≥ 0}.
Here ‖x‖ is the usual Euclidean norm on IRn. The function that takes x to
xT PA1x is continuous. Thus Ω1 is closed and bounded, hence compact. Fur-
thermore x1 (or any non-zero multiple of x1) is not in Ω1 and thus xT PA1x is
strictly negative on Ω1.
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Let M1 be the maximum value of xT PA1x on Ω1, and let M2 be the maximum
value of xT PA1x on Ω1. Then by the final remark in the previous paragraph,
M2 < 0. Choose any constant δ1 > 0 such that

δ1 <
|M2|

M1 + 1

and consider the positive definite matrix

P + δ1P .

By separately considering the cases x ∈ Ω1 and x /∈ Ω1, ‖x‖ = 1, it is easy to
see that for all non-zero vectors x of norm 1

xT (AT
1 (P + δ1P ) + (P + δ1P )A1)x < 0

provided 0 < δ1 < |M2|
M1+1 . But we can scale x by any real constant without

changing this inequality. Thus AT
1 (P + δ1P ) + (P + δ1P )A1 is negative definite.

Let C1 denote the value |M2|
M1+1 .

NOTE: It may appear that we are assuming that the set Ω1 is non-empty.
However, if Ω1 was empty, then any positive constant δ1 could be used in the
argument above to make AT

1 (P + δ1P ) + (P + δ1P )A1 negative definite.
Now the same argument can be used to guarantee the existence of a positive
constant C2 such that

xT (AT
2 (P + δ1P ) + (P + δ1P )A2)x < 0.

for all non-zero x provided we choose 0 < δ1 < C2. So, if we choose δ less than
the minimum of C1, C2, we would have a positive definite matrix

P1 = P + δP

which was a solution of (2).
Stage 2 : So under our assumptions, no positive definite solution P exists satis-
fying Equations (9) and (10). We now show that such a solution P would exist
unless one of the two pencils σγ[0,∞)[A1, A2], σγ[0,∞)[A1, A

−1
2 ] was singular.

Recall ((7), (8)) that there is a positive definite P such that

xT
1 PA1x1 = 0 (11)

xT
2 PA2x2 = 0. (12)

Suppose now that there was a Hermitian matrix H such that

xT
1 HA1x1 < 0 (13)

xT
2 HA2x2 < 0. (14)
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As the set of positive definite matrices is open in the set of Hermitian matrices,
we could choose ε > 0 such that P + εH was positive definite. Then P + εH
would satisfy (9), (10). So in fact, there is no Hermitian H satisfying (13), (14).
This means that any Hermitian H that makes the expression xT

1 HA1x1 negative
will make the expression xT

2 HA2x2 positive.
More formally

xT
1 HA1x1 < 0 ⇐⇒ xT

2 HA2x2 > 0 (15)

for Hermitian H . It follows from this that

xT
1 HA1x1 = 0 ⇐⇒ xT

2 HA2x2 = 0.

The expressions xT
1 HA1x1, xT

2 HA2x2, viewed as functions of H , define linear
functionals on the space of Hermitian matrices. Moreover, we have seen that the
null sets of these functionals are identical. So they must be scalar multiples of
each other. Furthermore, (15) implies that they are negative multiples of each
other. That is,

xT
1 HA1x1 = −kxT

2 HA2x2 (16)

with k > 0, for all Hermitian matrices H .
It follows from elementary arguments [1] that either x1 = αx2 and A1x1 =
−( k

α )A2x2 or x1 = βA2x2 and A1x1 = −( k
β )x2. Consider the former situation

to begin with. Then we have

A1(αx2) = −(
k

α
)A2x2

⇒ (A1 + (
k

α2
)A2)x2 = 0

and thus the pencil σγ[0,∞)[A1, A2] is singular. It follows that the matrix A1A
−1
2

has a negative eigenvalue.
On the other hand, in the latter situation, we have that

x2 =
1
β

A−1
2 x1

Thus

A1x1 = −(
k

β2
)A−1

2 x1

⇒ (A1 + (
k

β2
)A−1

2 )x1 = 0

Thus, in this case the pencil σγ[0,∞)[A1, A
−1
2 ] is singular. It follows that the

matrix A1A2 has a negative eigenvalue. This completes the proof of Theorem 3.1.
�
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4 Applications of Main Result

In this section, we describe a number of applications of Theorem 1 and the
techniques outlined in the last section. First of all, we shall present two di-
rect applications of the Theorem to the problem of CQLF existence for pairs of
exponentially stable LTI systems. The general problem of CQLF existence for
families of LTI systems is recognised as an analytical problem of great difficulty.
While it can be solved efficiently numerically using linear matrix inequalities
[9], closed-form necessary and sufficient conditions for the existence of a CQLF
are currently only known for a few special cases of system classes; in particular,
for the case of pairs of second order LTI systems [10, 11], and for pairs of n-
dimensional systems whose systems matrices differ by a rank 1 matrix [12]. We
shall show below that both of these important system classes satisfy the seem-
ingly abstract conditions specified by Theorem 1. Later in the section, we shall
see that the same ideas that led to the result of Theorem 1 can be successfully
applied to the related question of common diagonal Lyapunov function (CDLF)
existence for pairs of exponentially stable positive LTI systems of arbitrary di-
mension. In fact, we shall present a compact algebraic condition that is necessary
and sufficient for a generic pair of such systems to have a CDLF.

(i) Second order systems
We now illustrate the use of Theorem 1 for pairs of stable second order LTI
systems.
Let ΣA1 and ΣA2 be stable LTI systems with A1, A2 ∈ IR2×2. The following
facts follow trivially for second order systems.

(a) If a strong CQLF exists for ΣA1 and ΣA2 then the pencils σγ[0,∞)[A1, A2]
and σγ[0,∞)[A1, A

−1
2 ] are necessarily Hurwitz.

(b) If A1 and A2 satisfy the non-strict Lyapunov equations (5), (6) then the
matrices Q1 and Q2 are both rank 1 (rank n − 1).

(c) If a strong CQLF does not exist for ΣA1 and ΣA2 then a positive constant
d exists such that a strong CQLF exists for ΣA1−dI and ΣA2 . By continuity
a non-negative d1 < d exists such that A1 − d1I and A2 satisfy Theorem 1
and one of the pencils σγ[0,∞)[A1 − d1I, A2] and σγ[0,∞)[A1 − d1I, A−1

2 ] is
necessarily singular. Hence, it follows that one of the pencils σγ[0,∞)[A1, A2]
and σγ[0,∞)[A1, A

−1
2 ] is not Hurwitz.

Items (a)-(c) establish the following facts. Given two stable second order LTI
systems ΣA1 and ΣA2 , a necessary condition for the existence of a strong CQLF
is that the pencils σγ[0,∞)[A1, A2] and σγ[0,∞)[A1, A

−1
2 ] are Hurwitz. Conversely,

a necessary condition for the non-existence of a strong CQLF is that one of
the pencils σγ[0,∞)[A1, A2] and σγ[0,∞)[A1, A

−1
2 ] is not Hurwitz. Together these

conditions yield the following known result [10]:

A necessary and sufficient condition for the LTI systems ΣA1 and ΣA2 ,
A1, A2 ∈ IR2×2, to have a strong CQLF is that the pencils σγ[0,∞)[A1, A2]
and σγ[0,∞)[A1, A

−1
2 ] are Hurwitz.



38 Robert Shorten, Oliver Mason, and Kai Wulff

(ii) The SISO Circle Criterion
By modifying the argument presented in item (i) above a time domain formula-
tion of the Circle Criterion can be obtained using Theorem 1.
Let ΣA1 and ΣA2 be stable LTI systems with A1, A2 ∈ IRn×n and rank(A1 −
A2)=1. Then, the following facts follow directly [3].

(a) If a strong CQLF exists for ΣA1 and ΣA2 then σγ[0,∞)[A1, A
−1
2 ] and

σγ[0,∞)[A1, A2] are necessarily Hurwitz.
(b) If A1 and A2 satisfy the non-strict Lyapunov equations (5) (6) then it is

shown in [3] that the matrices Q1 and Q2 are both generically rank 1 (rank
n − 1).

(c) If a strong CQLF does not exist for ΣA1 and ΣA2 then a positive constant
k exists such that a strong CQLF exists for ΣA1 and ΣA2+k(A1−A2). By
continuity a non-negative k1 < k exists such that A1 and A2 + k1(A1 − A2)
satisfy Theorem 1 and the pencil σγ[0,∞)[A

−1
1 , A2+k1(A1−A2)] is necessarily

singular.
(d) Let A1, B ∈ IRn×n with A1 Hurwitz and rank(B) = 1. Suppose that for some

λ0 > 0, the matrix product A1(A1 + λ0B) has a negative eigenvalue (the
pencil σγ[0,∞)[A

−1
1 , A1 + λ0B] is singular). Then for all λ > λ0, the product

A1(A1 + λB) has a negative eigenvalue (the pencil σγ[0,∞)[A−1
1 , A1 + λB] is

singular).

Items (a)-(d) establish the following result. Given two stable LTI systems ΣA1

and ΣA2 with rank(A1 − A2)=1, a necessary and sufficient condition for the
existence of a strong CQLF is that the pencil σγ[0,∞) [A−1

1 , A2] is non-singular.
More formally:

Theorem 2. Let A, A+B be two Hurwitz matrices in IRn×n where rank(B)=1.
Then a necessary and sufficient condition for a strong CQLF to exist for the sys-
tems ΣA, ΣA+B is that the matrix product A(A+B) has no negative eigenvalues
or equivalently, that the matrix pencil σγ[0,∞)[A−1, A + B] is non-singular.

(iii) CDLF existence for positive linear systems
Recently, in [13] the same techniques that have been used above to derive The-
orem 1 and to obtain the conditions for CQLF existence for pairs of LTI sys-
tems with system matrices differing by rank one and second order systems, have
been applied to the problem of common diagonal Lyapunov function (CDLF)
existence for pairs of so-called positive LTI systems. The class of positive sys-
tems, whose state variables are constrained to be non-negative for all time, is
recognised to be of considerable practical importance, and examples of positive
systems commonly occur in areas such as population dynamics, communication
systems, pharmaceutics and economics [14]. While, the theory of positive LTI
systems is now well-developed [14], recent applications in areas such as con-
gestion control of the Internet and formation flying [15, 16] have indicated the
need for a greater understanding of time-varying, and in particular switched
positive linear systems. As with general switched linear systems, several funda-
mental questions relating to the stability of positive switched linear systems are
currently unresolved.
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Before stating the result on CDLF existence, we need to briefly provide some
background on the theory of positive LTI systems. Firstly, it is well-known that
an LTI system ΣA is positive if and only if the system matrix A is a so-called
Metzler matrix, where a Metlzer matrix A in IRn×n is one all of whose off-
diagonal entries are non-negative, aij ≥ 0 for i �= j. A remarkable property
of such systems is that a positive LTI system is exponentially stable if and
only if it has a diagonal Lyapunov function. Thus, for any Metzler, Hurwitz
matrix A in IRn×n, there is some positive definite diagonal matrix D such that
AT D+DA < 0. This fact gives rise to the problem of determining when a CDLF
exists for two or more exponentially stable positive LTI systems. Formally, given
the family of exponentially stable positive LTI systems ΣA1 , . . . , ΣAk

, where
Ai ∈ IRn×n, 1 ≤ i ≤ k, if there exists some positive definite diagonal matrix D
such that

AT
i D + DAi < 0 for 1 ≤ i ≤ k,

then V (x) = xT Dx is a CDLF for the systems ΣA1 , . . ., ΣAk
. We shall now

consider this problem for a pair of exponentially stable positive LTI systems
under the mild assumption that their system matrices are irreducible [17, 18].
Now let ΣA1 , ΣA2 be exponentially stable positive LTI systems, where A1, A2

are irreducible, Metzler, Hurwitz matrices in IRn×n. Then the following points
were established in [13].

(a) If ΣA1 , ΣA2 have a CDLF, then so do ΣA1 , ΣDA2D for all positive diagonal
D in IRn×n. Thus, A1 + DA2D must be Hurwitz and hence non-singular for
all diagonal D > 0.

(b) If there is no CDLF for ΣA1 , ΣA2 but there exists a non-zero diagonal D ≥ 0
satisfying

AT
i D + DAi = Qi ≤ 0 i ∈ {1, 2},

then Q1 and Q2 must have rank n − 1. This is the crucial stage in the
derivation of the condition for CDLF existence given in [13] and is interesting
to note in the light of the hypotheses of Theorem 1 above.

(c) Following arguments analogous to those used in the derivation of Theorem
1, it is possible to show that in the situation described in (b) there is some
diagonal D > 0 such that A1 + DA2D is singular.

(d) Finally, if ΣA1 , ΣA2 have no CDLF, then for α > 0 sufficiently large, ΣA1−αI ,
ΣA2 will have a CDLF. If we then define

α0 = inf{α > 0 : ΣA1−αI , ΣA2 have a CDLF },
then ΣA1−α0I , ΣA2 satisfy the conditions of (b). It follows that there is some
diagonal D > 0 such that A1 −α0I +DA2D is singular. A suitable rescaling
D of this D will now make A1 + DA2D singular.

Taking points (a)-(d) together, we have the following result giving a necessary
and sufficient condition for the existence of a CDLF for a generic pair of expo-
nentially stable positive LTI systems.
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Theorem 3. [13] Let ΣA1 , ΣA2 be exponentially stable positive LTI systems,
where A1, A2 are irreducible Hurwitz, Metzler matrices in IRn×n. Then a neces-
sary and sufficient condition for ΣA1 , ΣA2 to have a CDLF is that A1 + DA2D
is non-singular for all diagonal D > 0.

5 Implications of Main Result for General Multiplier
Criteria

Theorem 3.2 provides a time-domain condition for the existence of a CQLF for
pairs of LTI systems whose system matrices differ by a rank 1 matrix. Alterna-
tive, but equivalent, conditions can be obtained using the SISO circle criterion.
This observation raises the question as to whether time domain conditions de-
rived using Theorem 2.1 can be obtained directly from classical frequency domain
results. The following theorem provides an affirmative answer to this question.

Theorem 4. [2, 4] Let G(jω) = N(jω)
D(jω) be a rational transfer function and

K ∈ IR+. Let {A, b, c, d} be a controllable realisation of G(jω) so that G(jω) =
cT (jωI −A)−1b + d. Let A and A− bcT

K+d be strictly Hurwitz. Then, a necessary
and sufficient condition for

K + Re {G(jω)} > 0, ∀ ω ∈ IR ∪ {∞}, (17)

is that the matrix-product A
(
A − bcT

K+d

)
has no negative real eigenvalues.

Outline of proof: Equation (17) can be written

K + d + Re
{
cT (jωIn − A)−1b

}
> 0

for all ω ∈ IR ∪ {∞}. In particular K + d > 0. Applying Lemma 2 we obtain

K + d − 1 +
(1 − cT A(ω2In + A2)−1b)det

[
ω2In + A2

]
det [ω2In + A2]

> 0

K + d − cT A(ω2In + A2)−1b > 0

which implies
det
[
K + d − cT A(ω2In + A2)−1b

]
> 0.

Applying Lemma 1 yields

det
[
(K + d)In − (ω2In + A2)−1bcT A

]
> 0

det
[
(ω2In + A2)−1

]
det
[
(K + d)(ω2In + A2) − bcT A

]
> 0

det
[
(ω2In + A2)−1

]
(K + d)det

[
ω2In + A2 − 1

K + d
bcT A

]
> 0

det

[
ω2In +

(
A − 1

K + d
bcT

)
A

]
> 0 (18)



Convex Cones, Lyapunov Functions, and Switching Linear Systems 41

with the latter following as K + d > 0 and A has no imaginary eigenvalues. It
follows that a necessary condition for (17) is that the product A(A − 1

K+dbcT )
has no negative eigenvalues.
Let A1 = A and A2 = A− 1

K+dbcT and suppose that A2A1 has no negative real
eigenvalue, and that A1 and A2 are Hurwitz. It follows using the above argument
in reverse that (17) holds. �

Theorem 4 has profound implications for a number of classical frequency domain
stability results derived in the context of the Lur’e problem. Lur’e considered
the problem of determining the global asymptotic stability of the equilibrium
state of the system:

Γ : ẋ = Ax + bu

u = −f(σ, t)
σ = cT x

where A ∈ IRn×n is a Hurwitz matrix, b, c ∈ IRn×1 and where k1σ
2 ≤ f(σ, t)σ ≤

k2σ
2. In the context of this problem three of the best known results in systems

theory were derived; namely; the Kalman-Yacubovich-Popov lemma; the Circle
Criterion; and the Popov Criterion. All three of these results establish conditions
for stability as a constraint on the rational transfer function G(jω) = cT (jω −
A)−1b.

(i) The Kalman-Yacubovich-Popov (KYP) Lemma : The single-input single-
output (SISO) version of the Kalman-Yacubovich-Popov lemma [7] is ex-
pressed in the form of a strictly positive real (SPR) condition: namely,

γ + Re
{
cT (jωIn − A)−1b

}
> 0 ∀ ω ∈ IR,

for some γ ∈ IR+. A necessary condition for the above inequality to hold is
that both A and A − 1

γ bcT are Hurwitz. Hence, given this fact, it follows
from Theorem 4 that a time-domain version of the SPR condition for SISO
systems is that the matrix A(A − 1

γ bcT ) does not have any negative real
eigenvalues.

(ii) The Circle Criterion [2]: The SISO version of the circle criterion is derived
directly from the SISO KYP lemma. Here, conditions are derived for the
existence of a Lyapunov function V (x) = xT Px, P = PT ∈ IRn×n for
the non-linear Lur’e type system Γ . In the case where k1 = 0 and k2 = 1 a
necessary and sufficient condition for the existence of a quadratic Lyapunov
function V (x) is that [12]

1 + Re
{
cT (jωIn − A)−1b

}
> 0 ∀ ω ∈ IR.

It follows from Theorem 4 that a time-domain version of the circle criterion
with 0 ≤ f(σ, t) ≤ 1 is that the matrix A(A − bcT ) does not have any
negative real eigenvalues (A and A−bcT are necessarily Hurwitz as before).

(iii) The Popov Criterion : The SISO Popov criterion [19] considers the stability
of the system Γ where the nonlinearity f is time-invariant. A sufficient
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condition for the absolute stability of this system is that there exists a
strictly positive α ∈ IR such that

1
k

+ Re
{
(1 + jαω)cT (jωIn − A)−1b

}
> 0 ∀ ω ∈ IR.

It follows from Theorem 4 that a time-domain version of the Popov criterion
can be stated as follows: there exists a positive α ∈ IR such that the matrix
Ā(Ā− 1

d̄+ 1
k

b̄c̄) does not have any negative real eigenvalues where {Ā, b̄, c̄, d̄}
is the control canonical form of (1 + jαω)cT (jωIn − A)−1b and that both
these matrices are Hurwitz.

Comment : The Popov criterion is an example of a multiplier criterion. Over the
past 40 years many authors, including Popov, Zames and Falb, Willems, Naren-
dra and Taylor, and many others [20, 21, 22] have developed stability multiplier
criteria that exploit additional assumed properties of the sector nonlinearity f .
Roughly speaking, these conditions are expressed in the form of a strictly positive
real condition on a function of the form of

γ + Re
{
cT (jωIn − A)−1b

}
> 0 ∀ ω ∈ IR.

Consequently, compact time-domain versions of these criteria can be obtained
using Theorem 4. A particularly useful consequence of our result is that it leads
to very compact conditions for checking strict positive realness of a given LTI
system [23].

6 Examples

Example 1. Consider the non-linear system

Γ : ẋ = Ax + bu

u = −f(σ)
σ = cT x

where

A =
[

0 1
−1 −2

]
, b =

[
0
1

]
, c =

[
1
0

]
,

and where 0 ≤ f(σ)σ ≤ σ2. This system may be analysed using both the Circle
and Popov Criterion.

(i) The Circle Criterion : The matrix product W = A(A − bcT ) is given by

W =
[−2 −2

4 3

]
.

Since W does not have any negative eigenvalues it follows from the Circle
Criterion that the system Γ is absolutely stable.
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(ii) The Popov Criterion : The control canonical form of (1 + jαω)cT (jωIn −
A)−1b is:

Ā =
[

0 1
−1 −2

]
, b̄ =

[
0
1

]
, c̄ =

[
1
α

]
, d̄ = 0.

The matrix product W (α) = Ā(Ā − b̄c̄T ) is given by

W (α) =
[−2 −2 − α

4 3 + 2α

]
.

The matrix W (1) does not have negative real eigenvalues. Hence, it also
follows from the Popov Criterion that the system Γ is absolutely stable.

Example 2. Consider the stable dynamic systems ΣA1 and ΣA2 with:

A1 =

⎡⎣ 0 1 0
0 0 1
−1 −2 −3

⎤⎦ , A2 =

⎡⎣ 0 1 0
0 0 1
−2 −3 −1

⎤⎦ .

The matrix product A1A2 is given by:

A1A2 =

⎡⎣ 0 0 1
−2 −3 −1
6 8 1

⎤⎦ .

A CQLF cannot exist for ΣA1 and ΣA2 as the eigenvalues of A1A2 are given by
λi = {1,−2,−1}.

7 Open Questions

In this section, we briefly discuss two major open questions that arise out of the
work described earlier in the paper, and that should form the subject of future
research.
Identification of system classes that satisfy Theorem 1:
We have seen above how Theorem 1 unifies, in a certain sense, the results on
CQLF existence previously derived for second order systems and systems whose
system matrices differ by rank one. In both of these cases, the conditions for
CQLF existence are easy to verify and can be interpreted in terms of the dy-
namics of the associated switched linear systems. Moreover, the form of the
conditions given in the conclusions of Theorem 1 suggest that for any class of
system to which the Theorem can be applied, it may be possible to derive sim-
ilarly attractive conditions for CQLF existence using analogous techniques to
those employed above. Given the need for verifiable conditions that can be used
to determine the stability of switched linear systems, this observation leads to the
important problem of identifying further classes of systems to which Theorem
1 can be applied. The discovery of such system classes is likely to lead to other
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results along the lines of Theorem 2, giving verifiable, dynamically meaningful
conditions for CQLF existence.
Extension of convex set techniques to non-quadratic Lyapunov functions:
In general, the existence of a strong CQLF is only a sufficient condition for the
exponential stability of switched linear systems under arbitrary switching, and
in certain situations, less conservative results may be obtained based on non-
quadratic Lyapunov functions. Much recent work in this direction has focussed
on Lyapunov functions, defined using vector norms, that are piecewise linear or
piecewise quadratic. For the analysis of switching systems, the fact that these
functions can be non-smooth is an advantage, as the switching action itself is
non-smooth in nature.
The l1-norm based Lyapunov function

V (x) = ||Wx||1 W ∈ IR2×2

was proposed in [24]. Such functions are referred to as unic Lyapunov functions.
Note that while the LTI system ΣA has a quadratic Lyapunov function if and
only if the eigenvalues of A lie in the open left half plane, a unic Lyapunov
function exists for the system if and only if the eigenvalues of A lie within the
so-called 45◦ region

{z ∈ IC : |Im(z)| < |Re(z)|, Re(z) < 0}.

In [25], conditions for common unic Lyapunov function existence for pairs of
second order LTI systems are described. These conditions are related to the
matrix-pencil conditions given for CQLF existence for the second-order case in
Section 4 above.
The conditions for common unic Lyapunov function existence for second order
systems were derived using direct algebraic arguments specific to the second
order case. In the light of the work described earlier on the CQLF existence
problem, a natural question to ask is whether similar convex-cone based tech-
niques can be applied in this setting to obtain more general results on common
unic Lyapunov function existence. In order to do this, we would need to obtain a
greater understanding of the set of unic Lyapunov functions corresponding to a
given stable LTI system, and then investigate the possibility of obtaining results
similar to Theorem 1 for unic Lyapunov functions.

8 Concluding Remarks

In this paper we have presented a result on common quadratic Lyapunov func-
tions. We have shown that this result unifies a number of classical stability results
and leads to time-domain versions of a number of known frequency-domain sta-
bility criteria. As well as addressing the two open problems described in the
paper, future research will proceed in a number of directions; (i) by classifying
the classes of systems that satisfy the assumptions of Theorem 1; (ii) by explor-
ing the potential of time-domain stability criteria in for deriving stable adaptive
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control systems; and (iii) by using the time-domain stability criteria to reinter-
pret classical frequency domain analysis. Work in all three directions is ongoing
and will be reported in future publications.
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Abstract. This chapter presents a review of the explicit approaches to optimal 
control. It is organized as follows. Section 1 gives a summary of the main re-
sults of the optimal control theory. Section 2 presents briefly the methods for 
unconstrained optimal state feedback control of linear systems. Sections 3, 4 
and 5 consider in details the explicit methods for constrained linear quadratic 
regulation (LQR) together with several examples. The main motivation behind 
the explicit solution is that it avoids the need for real-time optimization, and 
thus allows implementation at high sampling frequencies in real-time systems 
with high reliability and low software complexity. These sections include for-
mulation of the constrained LQR problem, summary of the implicit approaches, 
basics of the model predictive control (MPC), description of the exact and the 
approximate approaches to explicit solution of MPC problems and the experi-
mental evaluation of explicit MPC controller performance for laboratory gas-
liquid separation plant. 

1 Optimal Control Theory 

1.1 General Optimal Control Problem Formulation 

Optimal control theory considers the problem of how to control a given system so that 
it has an optimal in certain sense behaviour. Control can be time-optimal, i.e. reaching 
the desired state in minimum-time, or reaching this state with minimal energy costs, 
or achieving maximal productivity in a fixed time. 

The general optimal control problem is formulated in the following way [1]: The 
system is described by a set of non-linear, non-autonomous state equations: 

),,( tuxf
dt
dx , 

(1) 

where x is the n-dimensional vector of state variables, u is the m-dimensional vector 
of control variables which we wish to choose optimally, f is an n-dimensional vector 
function and t is time. The initial state of the system is supposed to be known: 
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0)0( xx . (2) 

At any time the system is subject to a set of generally non-linear constraints: 

0),( uxg  (3) 

0),( uxh  (4) 

and the control variables should be in the admissible range defined by the lower and 
upper bounds: 

miuuu iii ,...,1,max,min, . (5) 

The system can be also subject to a terminal constraint which describes the target set: 

0)]([ ftx . (6) 

The final time tf may be fixed (fixed-time control problem) or variable (free end time 
control problem). A special case is the case of infinite final time. 

In order to specify what is meant by optimal, we must select a performance index 
)]([ tuI : 

ft

f dtuxFtxGuI
0

),()]([)(  
(7) 

which we wish to minimize. 
The optimal control problem is then to find the time varying controls )(tu  such 

that the performance index (7) is minimized while satisfying constraints (3), (4), (5), 
(6). In the case of free end time problem, the optimal final time tf must be determined 
in addition to the control variables in order to minimize the performance index. 

It has to be noted that expression (7) is sufficiently general to allow the treatment 
of a wide class of practical problems. In particular, we can have the following cases: 

 minimum-time control problem (minimize the time of transferring the system 
from the initial state to the desired final state): 

min1)(
0

ft

dtuI . 
(8) 

 maximal productivity problem (maximize the amount of desired product at the 
final time): 

max)]([)( ftxGuI . (9) 

This form of the performance index is typical for optimal control of batch processes. 
 minimize an integral criterion: 

min),()(
0

ft

dtuxFuI  
(10) 
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which can include the deviation from the desired final state and the cost of the control 
action. This form of the performance index is typical for optimal control of continu-
ous processes. 

1.2 Necessary Conditions for Optimality 

There exist several methods to solve optimal control problems for general non-linear 
systems. They are given in Fig.1. 

 
Methods to solve optimal control 
problems for non-linear systems 

Classical 
calculus of 
variations 

Pontryagin’s 
maximum 
principle 

Dynamic 
programming 

Non-linear 
programming 

techniques 

Unconstrained case Constrained case 

 

Fig. 1. Methods to solve optimal control problems for non-linear systems. 

The main features of the above methods are the following: 
1). Classical calculus of variations: 
 applied only for unconstrained systems; 
 requires continuous-time model; 
 there are numerical difficulties associated with solving TPBVP (two point bound-

ary value problem) and with the stiffness of the augmented system of differential 
equations. 

2). Pontryagin’s maximum principle: 
 takes into account the presence of constraints; 
 it can be applied for both continuous and discrete-time description of system dy-

namics; 
 there are numerical difficulties related to solving TPBVP and to the stiffness of the 

augmented system of equations. 
3). Dynamic programming: 
There are two versions of dynamic programming: 

a) Discrete dynamic programming (based on discretization both in time and state 
space): 

 takes into account the presence of constraints; 
 requires discrete-time representation of system dynamics; 
 there are numerical difficulties related to curse of dimensionality (even small in-

crease of system dimension, i.e. the number of state variables, the number of 
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control variables, the number of constraints, leads to an enormous increase of 
dimensionality of the optimization problem that has to be solved). 

b) Differential dynamic programming (Hamilton-Jacobi-Bellman equation): 
 takes into account the presence of constraints; 
 applicable to continuous-time systems; 
 well developed for low-dimensional systems. 

4). Non-linear programming techniques 
 takes into account the presence of constraints; 
 it can be applied for both continuous and discrete-time description of system dy-

namics; 
 leads to high-dimensional optimization problem. 

The characteristics of the methods for optimal control synthesis are summarized in 
Table 1. 

Table 1. Characteristics of the methods for optimal control synthesis. 

       Characteristics  
 
Methods  

Takes into account 
presence of constraints

Mathematical 
model 

Numerical difficulties 

Classical calculus of 
variations 

No continuous TPBVP, stiffness 

Pontryagin’s maximum 
principle 

Yes continuous, dis-
crete 

TPBVP, stiffness 

Dynamic programming Yes continuous, dis-
crete 

curse of dimensional-
ity 

Non-linear programming 
techniques 

Yes continuous, dis-
crete 

high-dimensional op-
timization problem 

 
The necessary conditions for optimality (according to Pontryagin’s maximum princi-
ple [1]) are the following: In order for a control )(tu  to be optimal in the sense that it 
minimizes the performance index (7) while satisfying the system equations (1) and 
constraints (5), it is necessary that the following condition: 

0
u
H  

(11) 

holds for the unconstrained portion of the path and the Hamiltonian function: 

),(),( uxfuxFH T  (12) 

is minimized along constrained portions of the control trajectory. Here  is an n-
dimensional vector of time-dependent Lagrange multipliers which are defined by the 
equation: 

x
H

dt
d  

(13) 
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and the final time condition: 

i
fi x

Gt )(  
(14) 

for those state variables which are unspecified at the final time tf. In addition it is nec-
essary that the Hamiltonian function )(tH  remains constant along the optimal trajec-
tory and that )(tH  takes the constant value of zero when the final time tf is unspeci-
fied. 

The necessary conditions of Pontryagin’s maximum principle are very similar to 
those arising from dynamic programming or the classical calculus of variations (when 
there no constraints). 

1.3 Computational Techniques 

There are a large variety of computational techniques for determining the optimal 
control for general non-linear systems. Some of the methods are based on numerically 
satisfying the necessary conditions for optimality, while others involve more direct 
search algorithms. The more commonly used algorithms are given in Fig.2. A detailed 
description of these algorithms is given in [2]. 

 

Computational techniques for 
determination of optimal control 

1-st order control 
vector iteration 

algorithms 

2-nd order control 
vector iteration 

algorithms 

Single shooting 
methods 

Multiple shooting 
methods 

Based on optimality conditions of 
Pontryagin’s maximum principle or 
Differential Dynamic Programming

Non-linear programming techniques 

 

Fig. 2. Computational techniques for optimal control synthesis. 

1.3.1 Control Vector Iteration Algorithms [1,2,3]. They are based on the 
optimality conditions of Pontryagin’s maximum principle and represent iterative 
procedures where at each iteration the system equations (1) are integrated forward in 
time, the adjoint equations (13) are integrated backward in time and the control vector 
is updated by applying the optimality condition (11). 
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Thus, for the 1-st order methods the following formulae [1,2] is used to improve 
the control vector (only information about 1-st order derivatives of the Hamiltonian 
function is used): 

];0[,0,)()(1
f

ii tt
U
Htutu , 

(15) 

while for the 2-nd order methods the following formulae is applied [3] (it uses infor-
mation also about 2-nd order derivatives of the Hamiltonian function): 

];0[,10

)()(
21

2

2
1

f

TT
ii

tt

xP
u
f

xu
Hs

u
f

u
H

u
Htutu

, 

(16) 

where: 

s
u
f

u
H

u
HP

u
f

xu
Hs

x
f

dt
ds TTTT 1

2

22

 
(17) 
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f
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H
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H
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22
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2

 
(18) 

with boundary conditions at tf : 

0,2

2

s
x
GP . 

(19) 

In (15) and (16) i is the iteration number. 
Similar algorithms are derived by applying Differential Dynamic Programming 

[3]. 
The disadvantages of the control vector iteration methods is the necessity to solve 

adjoint system of equations in addition to the original system equations and the big 
computational efforts related to calculation of the second-order derivatives when ap-
plying the second-order methods. 

1.3.2 Single Shooting Methods [1,2,4,5,6]. They represent direct search algorithms 
where control vector is approximated by a set of trial functions of time or by a set of 
trial functions of state variables. 

For open-loop control, each element )(tui  of control vector is represented by a set 
of trial functions of time )(tij : 

l

j
ijiji tatu

1
)()(  

(20) 

and then standard parameter optimization technique is used to determine the optimal 
values of coefficients aij . 
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For closed-loop control, each element )(tui  is approximated by a set of trial func-
tions )(xij  of state variables: 

l

j
ijiji xbxu

1
)()(  

(21) 

The advantages of these approaches are that no adjoint equations need to be solved 
and standard parameter optimization techniques can be used to determine the coeffi-
cients. One disadvantage of these algorithms is that the functional form of the optimal 
control must be specified in advance which leads to using a more general control 
function and therefore having a big number of coefficients to be optimized. Another 
disadvantage is that the boundaries of changing the coefficients are not known a pri-
ori. 

1.3.3 Multiple Shooting Methods [2,5,6,7]. These methods include approximation 
of both control and state variables. They consists of dividing the interval of interest 

];[ 0 ftt  (the interval of seeking the optimal solution) into M-number of sub-intervals 

];[ 1 jj tt  where the differential equations describing the system are approximated by 
algebraic equations and these are added as equality constraints to the optimization 
problem. Then, standard non-linear parameter optimization techniques are applied to 
solve the problem. 

The parameters to be optimized are: 

];[,,...,2,1,,...,2,1

)](,...),(),(),(,...),(),([
1

2121

jj
ijj

jmjjijnijij

tttNiMj

tutututxtxtxV
 

(22) 

and include both control variables and state variables values. A specific feature of 
these methods is high-dimensionality of the optimization problem since the total 
number of the optimization parameters is: 

nNmM j  (23) 

It has to be noted, however, that even though the multiple shooting methods lead to 
more parameters to be optimized, the non-linear programming problem is usually bet-
ter conditioned and easier to solve, in particular if the block diagonal structure of the 
problem is exploited. For comparison, the application of single shooting methods re-
sults in optimization problems with less structure. 

1.4 Example 

As an example, the time optimal control of a continuous stirred tank reactor (CSTR) 
is determined in [8] by applying control vector iteration algorithms. In the reactor 
(shown in Fig.3), a first-order irreversible reaction A B takes place. 
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A B

cf, Tf 

c, T 

u

 

Fig. 3. Continuous stirred tank chemical reactor. 

The mathematical model of the CSTR and values of the parameters are taken from the 
literature [4]. The mass and heat balance of the CSTR expressed through 
dimensionless concentration y1 and temperature y2 are [4]: 

1)0(,)1(
11

11 2 yykey
dt
dy y

E

 
(24) 

fc
y
E

f yyyyuyke
yy

dt
dy )0(,)(

)(
221

22 2 , 
(25) 

where the dimensionless quantities y1, y2, yc and yf  are defined as follows: 

f

f
f

f

c
c

ff Jc
T

y
Jc
Ty

Jc
Ty

c
cy ,,, 21  

(26) 

Here, c and cf are the concentrations in the reactor and of the feed stream, T, Tc and Tf 
are the temperatures respectively in the reactor, of the cooling stream and of the feed 
stream, J is the heat of the chemical reaction. The reaction rate is given by: 

1
2 yker y

E

, 
(27) 

where k is the pre-exponential multiplier and E is the activation energy of the 
reaction. The values of the parameters , cf, Tf, Tc, J, , k, E are taken from [4]. The 
coolant flowrate is the control variable )(tu  and it is constraint to be in the interval: 

1500)(0 tu  (28) 

The control problem to be solved is to move the reactor from the initial state to the 
steady state in minimum-time taking into account constraint (28) imposed on the 
control variable, i.e.: 
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370

3025.33)0(

4071.0time-min1)0(

:stateSteady:stateInitial
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22

*
11

u

yy

yy  

(29) 

The optimal control trajectory determined in [8] by applying control vector iteration 
algorithm is given in Fig.4 and the corresponding optimal trajectories of the concen-
tration and the temperature in the reactor are shown in Fig.5 and Fig.6. 

 

Fig. 4. Optimal control trajectory. 

 

Fig. 5. Optimal trajectory of concentration. 
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Fig. 6. Optimal trajectory of temperature. 

2 Optimal State Feedback Control of Linear Systems – Linear 
Quadratic Problem (Unconstrained) 

Only for very few cases it is possible to solve analytically (exactly) the Hamiltonian 
system of differential equations (equations (1) and (13)) when the system (1) is non-
linear. In the general case, numerical techniques must be applied to obtain an ap-
proximate solution of these equations. 

However, many systems that we wish to control are already adequately described 
by linear dynamic models. In this case, it is possible to solve analytically the equa-
tions related to the optimality conditions and to synthesize linear feedback controllers 
that minimize certain performance criteria. It is necessary to distinguish between ter-
minal controllers and regulators. A terminal controller [9] is designed to bring the 
system close to desired conditions at a terminal time (which may or may not be speci-
fied) while exhibiting acceptable behaviour on the way. A regulator [9] is designed to 
keep a stationary system within an acceptable deviation from a reference condition 
using acceptable amounts of control. 

2.1 Synthesis of Terminal Controllers for Linear Continuous-Time Systems 

The following problem is considered [9]: Given a time-varying linear system of the 
form: 

utBxtAx )()( , (30) 

we desire to bring it from an initial state )( 0tx  to a terminal state: 
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timeterminal,0)( ff ttx , (31) 

using “acceptable” levels of control )(tu  and not exceeding “acceptable” levels of the 
state )(tx  on the way. One way to do this is to minimize a performance index made 
up of a positive definite quadratic form in the terminal state plus an integral of posi-
tive definite quadratic forms in the state and the control: 

f

f

t

t

TT
ttf

T dtRuuQxxxSxI
0

2
1

2
1 , 

(32) 

where Sf, )(tQ  and )(tR  are positive definite matrices. 
This linear quadratic problem represents a classical problem in optimal control 

theory [9]. The optimal control, i.e. control that minimizes performance index (32) 
can be obtained by applying the optimality conditions mentioned above. Thus, the 
system equations (30) have to be solved simultaneously with the Euler-Lagrange 
equations [9]: 

)()(, fff txSt
x
H  

(33) 

0
u
H , 

(34) 

where the Hamiltonian function is given by: 

BuAxRuuQxxH TTT

2
1

2
1 . 

(35) 

Performing the differentiations indicated in (33) and (34), we have [9]: 
TAQx  (36) 

TBRu 1 . (37) 

By making substitutions, we obtain a linear two-point boundary-value problem [9]: 

)x(tS)(t
)x(tx

AQ
BBRAx

fff
T

T given
;
;

,

, 0
1

 
(38) 

There are three ways to solve this boundary-value problem [9]: 1). solution by transi-
tion matrix (by linear superposition); 2). solution by the sweep method (by Riccati 
transformation); 3). solution by dynamic programming. 

By applying the sweep method, the solution for )(t  is represented by the form 
[9]: 

)()()( txtSt , (39) 
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which has been termed the Riccati transformation . Here )(tS  is a symmetric positive 
definite nn  matrix. We may think of (39) as generating a boundary condition for 
(38) equivalent to the terminal condition )()( fff txSt , but at earlier times. In ef-
fect, the coefficients of the terminal condition are “swept” backward to the initial 
time. Then, since )( 0tx  is known, )( 0t  may be computed from )()()( 000 txtSt  
and (38) can be integrated forward in time as an initial-value problem. Substituting 
(39) into (38) yields: 

SxAQxxSxS T . (40) 

By substituting x  from (38) into (40) and using (39), we have: 

01 xQSBSBRSASAS TT . (41) 

Since 0)(tx , we have: 

QSBSBRSASAS TT 1  (42) 

with the terminal condition: 

ff StS )( . (43) 

Equation (42) is known as matrix Riccati equation [9]. The Riccati equation must be 
integrated backward from the terminal time ftt  to the initial time 0tt . It is then 
possible to determine )( 0t  as follows: 

)()()( 000 txtSt . (44) 

Then, the solution )(tx  and )(t  can be determined by forward integration of (38). 
As result of solving this linear quadratic control problem, we obtain the optimal 

state feedback control law [9]: 

)()()( txtKtu  (45) 

)()()()( 1 tStBtRtK T , (46) 

where )(tS  is the solution of Riccati equation. 
There are some points to note [1]: 
 The time-varying gain )(tK  can be determined off-line (by solving (42) for 

)(tS ) because )(tK  does not depend on )(tx  or )(tu . 
 If we let ft  and A, B, Q, R are constant matrices, then )(tS  becomes a 

constant matrix and is the solution of the algebraic Riccati equation [1]: 

01 QSASASBSBR TT . (47) 

Thus )(tK  is also a constant matrix and the controller is a constant-gain proportional 
controller: 
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)()( tKxtu  (48) 

SBRK T1 . (49) 

2.2 Synthesis of Linear Quadratic Regulators for Continuous-Time Systems 

A regulator is a feedback controller designed to keep a stationary system within an 
acceptable deviation from a reference condition using acceptable amounts of control 
[9]. The disturbances to the system are often unpredictable, i.e. random. Here, we will 
consider only deterministic initial disturbances, that is 0)( 0tx . 

It has been shown above that for a stationary system (A, B constant matrices), for 
constant matrices Q, R in the performance index and for the time period 0tt f  ap-
proaching infinity, the feedback gain matrix is constant: 

SBRK T1 , (50) 

where S is the solution of the algebraic Riccati equation: 

01 QSASASBSBR TT . (51) 

In this case, the optimal value of the performance index is [9]: 

)()(
2
1

00min tSxtxI T , 
(52) 

and it is independent on time. 
Thus, if a finite solution S of equation (51) exists and is positive definite, then )(tx  

and )(tu  are bounded (never become infinite) and: 

)()( tKxtu  (53) 

is a stable regulator [9]. 
In general, solution of the quadratic equation (51) will produce more than one 

value for S. The extra roots can be eliminated by the requirement that 0S . 
However, another approach is to integrate backward the differential Riccati equation: 

QSBSBRSASAS TT 1  (54) 

with the boundary condition: 

0)( ftS  (55) 

until: 

0S  (56) 

This is a valuable technique for synthesizing regulators [9]. 
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2.3 Synthesis of Linear Quadratic Regulators for Discrete-Time Systems 

It is more convenient not to consider the behaviour of a continuous-time system at all 
instants of time t but only at a sequence of instants tk, k=0, 1, 2, … . This is related to 
using digital devices (digital controllers, digital computers) when controlling and ana-
lyzing continuous-time systems. Discrete-time systems are described by state differ-
ence equation [10]: 

]),(),([)1( kkukxfkx , (57) 

where )(kx  is the state and )(ku  is the input at time-instant kt . Similarly, the output 
at time kt  is given by the output equation: 

]),(),([)( kkukxgky  (58) 

Linear discrete-time systems are described by state difference equation of the form 
[10]: 

)()()()()1( kukBkxkAkx , (59) 

where )(kA  and )(kB  are matrices of appropriate dimensions. The corresponding 
output equation is: 

)()()()()( kukDkxkCky . (60) 

Then, the discrete-time regulator problem is defined as follows [10]: Consider the 
discrete-time linear system: 

)()()()()1( kukBkxkAkx , (61) 

where: 

00 )( xkx , (62) 

with the output variable: 

)()()( kxkCky . (63) 

Consider the performance index: 

)()()()()1()1(
0

fff
T

kk

kk

TT kxSkxkRukukQykyI
f

 
(64) 

where )1(kQ  and )1(kR  are positive definite matrices for 
1,...,1, 00 fkkkk  and fS  is non-negative definite. Then the problem of de-

termining the input )(ku  for 1,...,1, 00 fkkkk  is called the discrete-time de-
terministic linear optimal regulator problem [10]. If all matrices occurring in the 
problem formulation are constant, we refer to it as the time-invariant discrete-time 
linear optimal regulator problem [10]. The optimal solution to the formulated prob-
lem is given by the following theorem [10]: 
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Theorem 1: 
Consider the discrete-time deterministic linear optimal regulator problem. The opti-
mal input is given by: 

1,...,1,,)()()( 00 fkkkkkxkKku , (65) 

where: 

)()1()1()1()1()(
)()1()1()1()1()()()( 1

kAkSkCkQkCkB
kBkSkCkQkCkBkRkK

TT

TT

. 
(66) 

Here the inverse always exists and the sequence of matrices 
1,...,1,,)( 00 fkkkkkS  satisfies the matrix difference equation: 

1,...,1,
)()()()1()1()1()1()()(

00 f

TT

kkkk
kKkBkAkSkCkQkCkAkS

 
(67) 

with the terminal condition: 

ff SkS )( . (68) 

The value of the criterion (64) achieved with this control law is given by: 

)()()( 000min kxkSkxI T  (69) 

  
For time-invariant systems the optimal solution to the above problem is given by the 
following theorem [10]: 

Theorem 2: 
Consider the time-invariant discrete-time linear optimal regulator problem. Then if 
the system is both stabilizable and detectable the following facts hold: 
1. The solution )(kS  of the difference equations (66) and (67) with the terminal 

condition ff SkS )(  converges to a constant steady-state solution S as fk  
for any 0fS . 

2. The steady-state optimal control law is time-invariant and asymptotically stable. 
3. The steady-state optimal control law minimizes (64) for fk  and for all 

0fS . The minimal value of the criterion is given by: 

)()( 00min kSxkxI T  (70) 
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3 Constrained Linear Quadratic Regulation 

3.1 Problem Formulation 

We consider time-invariant linear discrete-time system described by the state-space 
equation: 

0,)()()1( kktBuktAxktx , (71) 

where A and B are the state transition and input distribution matrices. It is assumed 
that (A, B) is stabilizable. 

The control objective is to regulate the state of the system optimally to the origin. 
Optimality is defined in terms of a quadratic objective and a set of inequality con-
straints [11]. The objective is defined over an infinite horizon and is given by: 

0
)()()()(...),1(),(),(

k

TT ktRuktuktQxktxtututxI  
(72) 

in which 0Q  and 0R  are symmetric weighting matrices. The constraints are 
also defined on an infinite horizon and take the form: 

0,)1( khktHx  (73) 

0,)( kgktGu , (74) 

where vectors h and g (of dimension respectively nh and ng) define the constraint lev-
els and H and G are the state and input constraint distribution matrices. 

Then, 3 control problems are formulated [11]. 
Problem 1 – Unconstrained linear quadratic regulation: 

0...),1(),(
)()()()(min

k

TT

tutu
ktRuktuktQxktx  

(75) 

subject to: 

0,)()()1( kktBuktAxktx . (76) 

This problem has been considered in the previous section and it was shown that the 
solution is the linear feedback control law: 

0,)()( kktKxktu , (77) 

where the controller gain matrix K can be calculated from the solution of the discrete 
algebraic Riccati equation. 

Problem 2 - Constrained linear quadratic regulation: 

0...),1(),(
)()()()(min

k

TT

tutu
ktRuktuktQxktx  

(78) 
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subject to: 

0,)()()1( kktBuktAxktx  (79) 

0,)1( khktHx  (80) 

0,)( kgktGu . (81) 

Problem 2 is a natural extension of Problem 1 that includes constraints. The difficulty 
associated with Problem 2 is the infinite number of decision variables in the optimiza-
tion and the infinite number of constraints. 

Problem 3 - Model Predictive Control (MPC) Problem: 
1

0)1(...),1(),(
)()()()(min

N

k

TT

Ntututu
ktRuktuktQxktx  

(82) 

subject to: 

0,)()()1( kktBuktAxktx  (83) 

1,...,1,0,)1( NkhktHx  (84) 

1,...,1,0,)( NkgktGu  (85) 

NkktKxktu ,)()(  (86) 

This form of MPC has a finite number of decision variables, N, and a finite number of 
constraints, )( gh nnN . It can therefore be solved with standard quadratic program-
ming methods. Here, the unconstrained feedback control law (86) is added to the fi-
nite set of N decision variables. 

3.2 Implicit Approaches 

In [11,12,13] implicit approaches have been developed to solve the constrained linear 
quadratic regulation problem (Problem 2). They are implicit in sense that the optimal 
control does not have the form of feedback control law, but it is obtained in the form 
of open-loop time trajectory. 

In their pioneering work [12] Sznaier and Damborg showed that finite-horizon op-
timization defined as the Model Predictive Control problem also provides the solution 
to the infinite-horizon linear quadratic regulation problem with constraints. This 
equivalence holds for a certain set of initial conditions, which depends on the length 
of the finite horizon. 

This idea has been developed further by Scokaert and Rawlings [11] and by 
Chmielewski and Manousiouthakis [13]. 

In [11] the following definition is made and an algorithm is proposed to solve the 
constrained LQR problem: 
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Definition 1: Let n
K RX  denotes the set of states )(tx  for which the uncon-

strained LQR law, 0,)()( kktKxktu , satisfies (71), (73) and (74). 
Algorithm 1 (constrained LQR): 
Step 0. Choose a finite horizon 0N , set 0NN . 
Step 1. Solve Problem 3 (MPC problem). 
Step 2. If KXNtx )( , go to step 4). 
Step 3. Increase N, go to step 1). 
Step 4. Terminate: N

* . 
Here )1(...),1(),( NtututuN  is the optimal control trajectory determined 

by solving the MPC problem, while *  is the optimal control trajectory that is a solu-
tion of the constrained LQR problem. 

In [11] it has been shown that the algorithm terminates in a finite number of itera-
tions, regardless of the choice of initial horizon in Step 0) and of the heuristics used to 
increase it in Step 3). In other words, the presented algorithm requires solving a finite 
number of finite-dimensional positive definite quadratic programs (QP). Also, the 
constrained LQR is shown to be both optimal and stabilizing. 

However, the dimension of the QP depends on the initial state and therefore the re-
sult is not useful for practical applications where an upper bound on the horizon (re-
spectively of the QP size) which is independent on the initial state is needed for de-
signing the control hardware. In this respect, Chmielewski and Manousiouthakis [13] 
describe an algorithm which provides a semi-global upper bound. Namely, for any 
given compact set 0X  of initial conditions, their algorithm provides the horizon N 
such that the finite horizon controller (solution of Problem 3) solves the infinite hori-
zon problem (Problem 2). 

3.3 Basics of Model Predictive Control 

Model predictive control is an efficient methodology to solve complex constrained 
multivariable control problems [14,15,16,17]. Here the basics of Model Predictive 
Control (MPC) are given according to [16]. 

Consider the problem of regulating to the origin the discrete-time linear time in-
variant system: 

)()()1( tButAxtx  (87) 

)()( tCxty  (88) 

while satisfying the following constraints: 

maxminmaxmin )(,)( utuuytyy  (89) 

at all time instants 0t . In (87) – (89), ntx )( , mtu )(  and pty )(  are the 
state, input and output vector respectively, miny , maxy  and minu , maxu  are respectively 
p and m-dimensional vectors and the pair (A, B) is stabilizable. 
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Model Predictive Control (MPC) solves such a constrained regulation problem in 
the following way [16]. Assume that a full measurement of the state )(tx  is available 
at the current time t. Then, the optimization problem: 

1

0
||||

...,,
)](,[min

11

y

yy
uNttt

N

k
ktkt

T
tkttkt

T
tNttNt

T

uuuU
RuuQxxPxxtxUI  

(90) 

subject to )(| txx tt  and: 

ctkt Nkyyy ,...,1,max|min  (91) 

ckt Nkuuu ,...,1,0,maxmin  (92) 

tNt y
x |  (93) 

0,||1 kBuAxx kttkttkt  (94) 

0,|| kCxy tkttkt  (95) 

yutktkt NkNKxu ,|  (96) 

is solved at each time t, where tktx |  denotes the predicted state vector at time kt , 
obtained by applying the input sequence 1,..., ktt uu  to model (87), (88) starting 
from the state )(tx . 

The name MPC stems from the idea of employing an explicit model of the plant to 
be controlled which is used to predict the future output behavior. This prediction ca-
pability allows solving optimal control problems on line, where tracking error, namely 
the difference between the predicted output and the desired reference, is minimized 
over a future horizon [16]. 

Further, we assume that 0TQQ , 0TRR , 0P , ),( 2
1

AQ  detectable (for 

instance CCQ T  with (C, A) detectable), K is some feedback gain, yN , uN , cN  
are the output, input and constraint horizons, respectively, with yu NN  and 

1yc NN , and  is a polyhedral terminal set. 
One possibility is to choose 0K  and P as the solution of the Lyapunov equation 

[16]: 

QPAAP T . (97) 

The choice 0K  implies that after uN  time steps the control is turned off and the 
system is allowed to settle in an open loop manner. This is only meaningful when the 
system is open-loop stable. With P obtained from (97), )](,[ txUI  measures the set-
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tling cost of the system from the present time t to infinity under the assumption that 
the control is turned off after uN  steps. 

Alternatively, one can set LQKK , where LQK  and P are the solution of the un-
constrained infinite horizon LQR problem with weights Q and R [16]: 

PABPBBRK TT
LQ

1  (98) 

QRKKBKAPBKAP LQ
T

LQLQ
T

LQ . (99) 

This choice of K implies that after uN  time steps the control is switched to the uncon-
strained LQR. With P obtained from (99), )](,[ txUI  measures the settling cost of the 
system from the present time t to infinity under this control assumption. 

The MPC control law is based on the following idea [16]: At time t compute the 
optimal solution to problem (90) – (96) (the optimal input sequence): 

*
1

** ,...,)(
uNtt uutU  (100) 

and apply to the system only the first input from the sequence: 
*)( tutu . (101) 

The remaining optimal inputs are discarded and a new optimal control problem is 
solved at time 1t , based on the new state )1(tx . Such a control strategy is also re-
ferred to as moving or receding horizon. This idea is illustrated in Fig.7. 

 

t t+1 t+Nu t+Ny 

Predicted outputs y(t+k|t) 

Control inputs u(t+k)

past future 

input horizon

output horizon

 

Fig. 7. Receding horizon strategy: only the first input of the computed optimal input sequence 
is implemented. 

As new measurements are collected from the plant at each time t, the receding horizon 
mechanism provides the controller with the desired feedback characteristics. 
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The stability of MPC feedback loops was investigated by numerous researchers 
[14,15,16]. Stability is in general a complex function of the various tuning parameters 

uN , yN , cN  P, Q and R [16]. For applications it is most useful to impose some con-
ditions on yN , cN  and P so that stability is guaranteed for all 0Q , 0R . Then Q 
and R can be freely chosen as tuning parameters to affect performance. The constraint 
(93) is sometimes called “stability constraint” and it explicitly forces the state vector 
to reach an invariant set at the end of the prediction horizon. The stability result is for-
mulated in the following theorem [16]: 

Theorem 3: 
Let yN , 0K  or LQKK , and cN  be sufficiently large for guaranteeing 
existence of feasible input sequences at each time step. Then the MPC law (90) – 
(101) asymptotically stabilizes the system (87) – (88) while enforcing the fulfillment 
of the constraints (89) from all initial states )0(x  such that (90) – (96) is feasible at 

0t . 
  

4 Exact Approaches to Explicit Solution of MPC Problems 

4.1 MPC Computation 

By substituting [16,17]: 
1

0
1| )(

k

j
jkt

jk
tkt BuAtxAx  

(102) 

in the optimization problem (90) – (96), this can be rewritten in the form: 

FUtxHUUtYxtxtxV TT

U

T )(
2
1min)()(

2
1)]([*  

(103) 

subject to: 

)(tExWGU , (104) 

where the column vector u
sTT

Nt
T
t mNsuuU

u
,,..., 1 , is the optimization vec-

tor, 0THH  and H, F, Y, G, W, E are easily obtained from Q, R and (90) – (102). 
The optimization problem (103) – (104) is a quadratic program (QP). Because the 

problem depends on the current state )(tx , the implementation of MPC requires the 
on-line solution of a QP at each time step. Although efficient QP solvers based on ac-
tive-set methods and interior point methods are available, computing the input )(tu  
demands significant on-line computation effort. For this reason, the application of 
MPC has been limited to “slow ” and/or “small ”processes. 
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Bemporad et al. [16,17] have proposed a new approach to implement MPC, where 
the computation effort is moved off-line. The MPC formulation described in the pre-
vious section provides the control action )(tu  as a function of )(tx  implicitly defined 
by (103) – (104). By treating )(tx  as a vector of parameters, the goal is to solve (103) 
– (104) off-line with respect to all the values of )(tx  of interest and make this de-
pendence explicit [16,17]. 

In terms of operations research, mathematical programs which depend only on one 
scalar parameter are referred to as parametric programs, while problems depending 
on a vector of parameters as multi-parametric programs. According to this terminol-
ogy, (103) – (104) is a multi-parametric Quadratic Program (mp-QP). 

Bemporad et al. [16,17] have suggested an algorithm to solve mp-QP problems. 
Once the multi-parametric problem (103) – (104) has been solved off-line, i.e. the 
solution: 

)]([** txUUt  (105) 

of (103) – (104) has been found, the model predictive controller (90) – (96) is avail-
able explicitly, as the optimal input )(tu  consists simply of the first m components of 

)]([* txU : 

)]([0...0)( * txUItu . (106) 

It has been shown by Bemporad et al. [16,17] that the solution )(* xU  of the mp-QP 
problem is a continuous and piecewise affine function of x. Therefore, the same prop-
erties are inherited by the controller. 

4.2 Exact Approach to Explicit Solution of MPC Problems 

Bemporad et al. [16,17] have developed an algorithm to express the solution )(* xU  

and the minimum value )]([)( ** xUIxV  as an explicit function of the parameters x 
and to characterize the analytical properties of these functions. In particular they have 
proved that the solution )(* xU  is a continuous piecewise affine function of x in the 
following sense [16,17]: 

Definition 2: 
A function sXxz :)( , where nX  is a polyhedral set, is piecewise affine if it 
is possible to partition X into convex polyhedral regions, iCR , and 

i
ii CRxkxHxz ,)( . 

Piecewise quadraticity is defined analogously by letting )(xz  be a quadratic func-

tion iiiT kxHxWx . 
In [16,17] it is defined: 

)(1 txFHUz T , (107) 
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where sz  and the problem (103) – (104) is transformed to the equivalent prob-
lem: 

HzzxV T

zz 2
1min)(*  

(108) 

subject to: 

)(tSxWGz , (109) 

where TFGHES 1  and xFFHYxxVxV TT
z

1**

2
1)()( . 

The solution of mp-QP problems can be approached by employing the principles of 
parametric nonlinear programming and in particular the first-order Karush-Kuhn-
Tucker (KKT) optimality conditions [18], which lead to the Basic Sensitivity Theo-
rem. 

Instead, Bemporad et al. [16,17] have adopted a more direct approach which ex-
ploits the linearity of the constraints and the fact that the function to be minimized is 
quadratic. The approach [16,17] is described as follows. In order to start solving the 
mp-QP problem, an initial vector 0x  inside the polyhedral set X of parameters is 
needed, such that the QP problem (108) – (109) is feasible for 0xx . Such a vector 
can be found for instance by solving the linear program (LP) [16,17]: 

,,
max

zx
 (110) 

subject to: 

WSxGz  (111) 

0  (112) 

Xx . (113) 

If the LP is infeasible, then the QP problem (108) – (109) is infeasible for all Xx . 
Otherwise, it is fixed 0xx  and the QP problem (108) – (109) is solved in order to 
obtain the corresponding optimal solution 0z . Such a solution is unique because 

0H and therefore uniquely determines a set of active constraints WxSzG ~~~
00  

out of the constraints in (108) – (109). Let G~ , S~  and W~  denote the rows of G , S  
and W  corresponding to the active constraints. Then, the following theorem is proved 
[16,17]: 

Theorem 4: 
Let 0H . Consider a combination of active constraints G~ , S~ , W~  and assume that 
the rows of G~ are linearly independent. Let 0CR  be the set of all vectors x for which 
such a combination is active at the optimum ( 0CR  is referred to as critical region). 
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Then, the optimal z and the associated vector of Lagrange multipliers  are uniquely 
defined affine functions of x over 0CR . 
  

Proof [16]: 
The first-order KKT conditions for the mp-QP are given by: 

qTGHz ,0  (114) 

qixSWzG iii
i ,...,1,0  (115) 

0 , (116) 

where the superscript i denotes the i-th row. Equality (114) is solved for z: 
TGHz 1  (117) 

and the result is substituted into (115) to obtain the complementary slackness condi-
tion: 

01 SxWGGH T . (118) 

Let  and ~  denote the Lagrange multipliers corresponding to inactive and active 
constraints, respectively. For inactive constraints 0 . For active constraints 

0~~~~~ 1 xSWGHG T  and therefore: 

xSWGHG T ~~~~~ 11 , (119) 

where G~ , W~ , S~  correspond to the set of active constraints and 
11 ~~ TGHG  exists 

because the rows of G~  are linearly independent. Thus  is an affine function of x. 
By substituting ~  from (119) into (117), it is obtained: 

xSWGHGGHz TT ~~~~~ 111  (120) 

and it is noted that z is also an affine function of x. 
Theorem 4 characterizes the solution only locally in the neighborhood of a specific 

0x , as it does not provide the construction of the set 0CR  where this characterization 
remains valid. On the other hand, this region can be characterized immediately 
[16,17]. The variable z from (117) must satisfy the constraints (109): 

SxWxSWGHGGGH TT ~~~~~ 111  (121) 

and by (116) the Lagrange multipliers in (119) must remain nonnegative: 

0~~~~ 11 xSWGHG T  (122) 
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as x varies. After removing the redundant inequalities from (121) and (122), a com-
pact representation of 0CR  is obtained. Obviously, 0CR  is a polyhedron in the x-
space and represents the largest set of Xx  such that the combination of active con-
straints at the minimizer remains unchanged (Fig.8(a)). Then, the algorithm in [16,17] 
continues with the division of the parameter space as in Fig.8(b) and (c) by reversing 
one by one the hyperplanes defining the critical region 0CR . Iteratively each mew re-
gion iR  is subdivided in a similar way as was done with X . As noted in [19], the 
main drawback of this algorithm is that the regions iR  are not related to optimality, as 
they can split some of the critical regions like 1CR  in Fig.8(d). A consequence is that 

1CR  will be detected at least twice. 

 

Fig. 8. State space exploration strategy of Bemporad et al [16,17]. 

The properties of the set of feasible parameters XX f  (i.e. the set of parameters 

Xx  such that a feasible solution )(* xz  exists to the optimization problem (108) – 

(109)), the value function )(* xVz  and the solution )(* xz  are formulated in the follow-
ing theorem [16]: 

Theorem 5: 
Consider the multi-parametric quadratic program (108) – (109) and let 0H , X con-
vex. Then the set of feasible parameters XX f  is convex, the optimizer 

s
fXxz :)(*  is continuous and piecewise affine and the value function 

fz XxV :)(*  is continuous, convex and piecewise quadratic. 
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Based on the above results, the main steps of the off-line mp-QP solver are out-
lined in the following algorithm [16]: 

Algorithm 2 (exact mp-QP): 
Step 1. Let the current region be the whole set nX . 
Step 2. Choose a vector 0x  in the current region by solving the linear program 

(110) – (113). 
Step 3. For 0xx , compute the corresponding optimal solution 00 ,z  by solving 

a QP. 
Step 4. Determine the set of active constraints when 0zz , 0xx , and build G~ , 

W~ , S~ . 
Step 5. If Gr ~rank  is less than the number l of rows of G~ , take a subset of r 

linearly independent rows and redefine G~ , W~ , S~  accordingly. 
Step 6. Determine )(~ x , )(xz  from (119) and (120). 
Step 7. Characterize the CR from (121) and (122). 
Step 8. Define and partition the rest of the region. 
Step 9. For each nonempty new sub-region, go to step 2. 
Step 10. When all regions have been explored, for all polyhedral regions where 
)(xz  is the same and whose union is a convex set, compute such a union. 

In conclusion, Algorithm 2 provides the explicit solution )(xfu  to the MPC 
problem (90) – (96), as the piecewise affine function: 

MPC
iiii NihxHkxKu ,...,1,if21 , (123) 

where the polyhedral sets MPC
ii NihxH ,...,1,  are a partition of the given set of 

states X. 

4.3 Efficient Implementation of the Exact Approach to Explicit Solution of 
MPC Problems 

4.3.1 Main Theoretical Result. The approach of Tøndel et al. [19] modifies the 
explicit approach of Bemporad et al. [16,17] by analyzing several properties of the 
geometry of the polyhedral partition and its relation to the combination of active 
constraints at the optimum of the quadratic program. Based on that, they derive a new 
exploration strategy for sub-dividing the parameter space, which: 
1. avoids unnecessary partitioning; 
2. avoids the solution to LP problems for determining an interior point in each new 

region of the parameter space; 
3. avoids the solution to the QP problem for such an interior point. 
As a consequence, there is a significant improvement of efficiency with respect to the 
algorithm of Bemporad et al. [16,17]. 

Before describing the main idea of the approach [19], some definitions are made 
[19]: 
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Definition 3: 
Let )(* xz  be the optimal solution to (108) – (109) for a given x. We define active 

constraints the constraints with 0)(* xSWxzG iii  and inactive constraints the 

constraints with 0)(* xSWxzG iii . The optimal active set )(* x  is the set of 

indices of active constraints at the optimum xSWxzGix iii )(|)( ** . We also 
define as weakly active constraint an active constraint with an associated zero La-
grange multiplier i  and as strongly active constraint an active constraint with a posi-
tive Lagrange multiplier i . 

Definition 4: 
For an active set, we say that the linear independence constraint qualification (LICQ) 
holds if the set of active constraint gradients are linearly independent, i.e. G~  has full 
row rank. 

Below, the linear expression of the PWL function )(* xz  over the critical region 

kCR  is denoted by )(* xzk . In general, a superscript index is used to denote a row of a 
matrix or element of a vector. 

Definition 5: 
Let a polyhedron nX  be represented by the linear inequalities bxA0 . Let the i-

th hyperplane, ii bxA0  be denoted by . If X  is (n-1)-dimensional then 
X  is called a facet of the polyhedron. 

Definition 6: 
Two polyhedra are called neighboring polyhedra if they have a common facet. 

Definition 7: 
Let a polyhedron X be represented by bxA0 . We say that ii bxA0  is redundant if 

iijj bxAijbxA 00  (i.e. it can be removed from the description of the poly-
hedron). The inequality i is redundant with degree h if it is redundant but there exists 
a h-dimensional subset Y of X such that ii bxA0  for all Yx . 

Let us consider a hyperplane defining the common facet between two polyhedra 
0CR , iCR  in the optimal partition of the state space. There are two different kinds of 

hyperplanes [19]. The first (Type I) are those described by (121), which represent a 
non-active constraint that becomes active at the optimum as x moves from 0CR  to 

iCR . This means that if a polyhedron is bounded by a hyperplane which originates 
from (121), the corresponding constraint will be activated on the other side of the 
facet defined by this hyperplane. In addition, the corresponding Lagrange multiplier 
may become positive. The other kind (Type II) of hyperplanes which bounds the 
polyhedra are those described by (122). In this case, the corresponding constraint will 
be non-active on the other side of the facet defined by this hyperplane. This is formu-
lated in the following theorem [19]: 

Theorem 6: 
Consider an optimal active set kiii ,...,, 21  and its corresponding n-minimal repre-
sentation of the critical region 0CR  obtained by (121) – (122) after removing redun-
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dant inequalities. Let iCR  be a full-dimensional neighboring critical region to 0CR  
and assume LICQ holds on their common facet 0CR  where  is the sepa-
rating hyperplane between 0CR  and iCR . Moreover, assume that there are no con-

straints which are weakly active at the optimizer )(* xz  for all 0CRx . Then: 

Type I. If  is given by xSWxzG kkk iii 111 )(*
0 , then the optimal active set in 

iCR  is 11 ,,..., kk iii . 

Type II. If  is given by 0)(0 xki , then the optimal active set in iCR  is 

11 ,..., kii . 
  

4.3.2 Example. The example is taken from [19]. Consider the double integrator [20]: 

s

ss

T
T

B
T

A
2

,
10

1 , 
(124) 

where the sampling interval is 05.0sT  and consider the MPC problem over the pre-
diction horizon N=2 with cost matrices: 

1,
00
01

RQ . 
(125) 

The constraints in the system are: 

11 u  (126) 

5.05.0 2x . (127) 

The mp-QP associated with this problem has the form (108) – (109) with H, F, G, W, 
S given in [19]: 

517.1573.1
036.1109.1

,
073.1076.0
076.0079.1

FH  
(128) 

05.0005.001010
05.005.005.005.00101TG  

(129) 

5.05.05.05.01111TW  (130) 

9.09.09.09.03.14.13.14.1
1.01.01.01.09.00.19.00.1TS  

(131) 

The partitioning starts with finding the region where no constraints are active. As the 
mp-QP is created from a feasible MPC problem, the empty active set will be optimal 
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in some full-dimensional region ( 0  and G~ , W~  and S~  are empty matrices, 

0)(* xz  and the first component of )(* xU  is the unconstrained LQR gain). This 
critical region is then described by SxW0  which contains 8 inequalities. Two of 
these inequalities are redundant with degree 0 (#2 and #4), the remaining 6 hyper-
planes are facet inequalities of the polyhedron (see Fig.9(a)). 
 

 

Fig. 9. Critical regions for double integrator. 

By crossing the facet given by 1 , defined by inequality 1 and of Type I, as predicted 
by Theorem 6 the optimal active set across this facet is 11 , which leads to the 
critical region 1CR  (see Fig.9(b)). After removing redundant inequalities we are left 
with an n-minimal representation of 1CR  containing 4 facets. The first of these is of 

Type II, 0)(1 x . The other three are of Type I. These are inequalities #2, #6 and 

#7. Consider first the other side of the facet which comes from 0)(1 x , see 
Fig.9(c). The region should not have constraint 1 active, so the optimal active set is 

2 . This is the same combination of active constraints as 0 , as expected, so 

2  is not pursued. Next, consider crossing the respective facets of inequalities 2, 6 
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and 7, see Fig.9(d)–9(f). This results in three different active sets: 2,13 , 
6,14  and 7,15 . The sets 3  and 4  lead to new polyhedra as shown in 

the figures. The combination 5  leads to an interesting case of “degeneracy”. The as-

sociated matrix G~  has linearly dependent rows, which violates the LICQ assumption. 
In this case, 5  leads to an infeasible part of the state space. 

5 Approximate Approach to Explicit Solution of MPC Problems 

5.1 Complexity of the Exact Approaches 

Consider the same double integrator example as in section 4.3.2. Fig.10 shows the 
partition for horizon N=10 corresponding to the exact solution provided by the algo-
rithm [19]. We observe that the exact solution is fairly complex, containing 191 poly-
hedral critical regions, many of them of very small volume. 
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Fig. 10. Polyhedral partition of state space for the double integrator with N=10. 

5.2 Main Idea of the Approximate Approach 

Here we suggest an entirely different approach to compute sub-optimal explicit MPC 
solutions [21,22,23]. The idea is to require that the state space partition is represented 
as a search tree, i.e. to consist of orthogonal hypercubes organized in a hierarchical 
data-structure that allows extremely fast real-time search. The computational com-
plexity with the suggested approach is logarithmic with respect to the number of re-
gions, while a general polyhedral partitioning leads to a computational complexity 
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that is linear with respect to the number of regions, if no additional data structures are 
built. The optimal solution is computed explicitly using quadratic programming (QP) 
only at the vertices of these hypercubes, and an approximate solution valid in the 
whole hypercube is computed based on this data. A hypercube is partitioned into two 
or more smaller hypercubes only if this is necessary to achieve the desired local accu-
racy of the solution. This makes the idea similar to storing the pre-computed QP solu-
tions at the various states in a multi-resolution lookup table. 

Unlike any other method mentioned above, that all relies on the linearity of the 
problem to build polyhedral regions and a PWL (piece-wise linear) solution, the sug-
gested method is straightforward to be extended to nonlinear constrained MPC prob-
lems by replacing the QP with a nonlinear program. 

5.3 Approximate mp-QP Algorithm 

We restrict our attention to a hypercube nX  where we seek to approximate the 
optimal PWL solution )(* xz  to the mp-QP problem (108) – (109). In order to mini-
mize the real-time computational complexity we require that the state space partition 
is orthogonal and can be represented as a search tree (generalized quad-tree [24], 
Fig.11 (left)), such that the search complexity is logarithmic with respect to the num-
ber of regions. 

    

Fig. 11. Partition of a rectangular region in a 2-dimensional state space. Left: quad-tree parti-
tion. Right: k - d tree partition. 

The orthogonal search tree is a hierarchical data structure where a hypercube can be 
hierarchically subdivided into smaller hybercubes allowing the local resolution to be 
adapted, as shown in Fig.11. When searching the tree, only n scalar comparisons are 
required at each level. 

The improved version of the approximate mp-QP algorithm is based on a k - d tree 
partition of the state space (Fig.11 (right)) as a more flexible and powerful alternative 
to the generalized quad-tree (Fig.11 (left)). With the k - d tree [24], a hyper-rectangle 
is split into two equal parts and thus only one scalar comparison is required at each 
level when searching the tree. Also, the k - d tree allows the incorporation of heuristic 
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rules that split the hyper-rectangle at the axis along which the change of error is 
maximal (before splitting). 

There are two versions of the approximate mp-QP algorithm, based respectively on 
the cost function approximation error )(xcost  [21,22], and on the control input ap-
proximation error )(xinput  [23]. The approximation error in the cost function is: 

)()(ˆ)( * xVxVx zzcost  (132) 

where )(ˆ)(ˆ
2
1)(ˆ T xzHxzxV 00z  and )()(

2
1)( T* xHzxzxV **

z  are respectively the sub-

optimal and the optimal costs, and )(ˆ xz0  and )(xz*  are the sub-optimal and the op-
timal PWL solutions. The approximation error in the control input is: 

)(ˆ)()(ˆ)()( T xzxzxzxzx 0
*

0
*

input  (133) 

where 0  is a weighting matrix which typically has non-zero weight only on the 
components of the solution corresponding to the first sample of the trajectory. 

Initially the algorithm will consider the whole region XX 0 . The main idea of 
the approximate mp-QP algorithm is to compute the solution of the problem (108) – 
(109) at the n2  vertices of a considered hyper-rectangle 0X  by solving up to n2  
QPs. Based on these solutions, a feasible local linear approximation )(ˆ xz0  to the 

PWL optimal solution )(xz* , valid in the whole hyper-rectangle 0X , is computed by 
using the following result [25]: 

Lemma 1: 
Consider the bounded polyhedron fXX 0  with vertices M21 vvv ,...,,  (here fX  

is the feasible set: })104(satisfying)({ UtxX n
f ). If 0K  and 0g  solve the 

QP: 
M

i
0i0i

*
0i0i

*

gK
gvKvzHgvKvz

00 1

T

,
)()(min  

(134) 

subject to: 

MiWSvgvKG i0i0 ,...,2,1, , (135) 

then the least squares approximation 000 gxKxz )(ˆ  is feasible for the mp-QP 
(108) – (109) for all 0Xx . 
  

If the maximal approximation error 0  in the hyper-rectangle 0X  is smaller than 
some prescribed tolerance 0 , no further refinement of 0X  is needed. Otherwise, 

0X  is partitioned into two hyper-rectangles and the procedure described above is re-
peated for each of these. If the approximation error in the cost function is considered, 
the upper bound 0  is determined by using the method proposed in [21,22]. If the ap-
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proximation error in the control input is being used, then the maximal value 0  is de-
termined in the way given in [23]. 

In order to reduce the complexity of the partition, the heuristic rule described in 
[23] is applied when splitting the hyper-rectangle 0X . The rule attempts to split the 
hyper-rectangle at the axis along which the change of the approximation error is 
maximal (before splitting), because it is reasonable to hope this is how the largest re-
duction of the error can be made. The heuristic rule uses information about the error 
( )(xcost  or )(xinput ) in the hyper-rectangle 00 XX d  that contains a finite number 
of representative points in 0X , typically the vertices of one or more hyper-rectangles 
contained in the interior of 0X . 

Heuristic splitting rule: 
Split the hyper-rectangle 0X  by a hyperplane through its center and orthogonal to the 
axis jx  where the total absolute change of the approximation error measured both at 

the facet centers of 0X  and the vertices of dX 0  is maximal. 
It has been shown in [23] that the use of such heuristics reduces the complexity of 

the partition significantly. 
The complexity is further reduced by implementing control input trajectory param-

eterization as it is described in [26]. The idea is to use an input trajectory parameteri-
zation with less degrees of freedom in order to reduce the dimension of the optimiza-
tion problem. The most common approach is to pre-determine the time-instants at 
which the control input iu  is allowed to change (input blocking): 

]...1[ 21
iiii u

l
uuu

change NNNN . (136) 

The following approximate mp-QP algorithm is taken from [22]: 
Algorithm 3 (approximate mp-QP): 
Step 1. Initialize the partition to the whole hyper-rectangle, i.e. XP . Mark the 

hyper-rectangle X as unexplored. 
Step 2. Select any unexplored hyper-rectangle PX 0 . If no such hyper-rectangle 

exists, go to step 8. 
Step 3. Compute the solution to the QP (108) – (109) for x fixed to each of the n2  

vertices of the hyper-rectangle 0X . If all QPs have a feasible solution, go to step 5. 
Otherwise, go to step 4. 

Step 4. Compute the size of 0X  using some metric. If it is smaller than some given 
tolerance, mark 0X  infeasible and explored. Go to step 2. Otherwise, go to step 7. 

Step 5. Compute an affine state feedback 0ẑ  using Lemma 1, as an approximation 
to be used in 0X . If no feasible solution was found, go to step 7. 

Step 6. Compute the error bound 0  in 0X . If 0 , mark 0X  as explored and 
feasible and go to step 2. 
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Step 7. Split the hyper-rectangle 0X  into two hyper-rectangles 1X  and 2X  by ap-
plying the heuristic splitting rule. Mark them unexplored, remove 0X  from P, add 

1X  and 2X  to P, and go to step 2. 
Step 8. If necessary, split the hyper-rectangles containing the origin such that 

0)(xz*  is optimal everywhere in these hyper-rectangles. Terminate. 
This algorithm will terminate with a PWL function that is an approximation to the 

PWL exact solution and is defined on an inner approximation fX  of the set fXX . 
The set fX  is represented as a union of hyper-rectangles. 

5.4 Stability of the PWL Approximate Solution 

It is shown in [22] that under some assumptions on the terminal set  and the toler-
ance  the approximate explicit MPC will make the origin asymptotically stable. 

Let  be the largest hyper-rectangle containing the origin in its interior where the 
solution computed by the approximate explicit MPC is Kxxu )(* , i.e. exactly the 
unconstrained LQR feedback. It is straightforward to show that Algorithm 3 leads to a 
non-empty  due to step 8. Let the terminal set  be the maximal output admissi-
ble set [27] for the linear system )()1( txBKAtx  contained in the polyhedral 
set: 

},|{ maxminmaxmin yCxyuKxux  (137) 

The set  is a polyhedron with a finite number of facets and can be easily computed, 
since BKA  is Hurwitz and  is bounded because X is bounded [27]. The stability 
result is formulated in the following theorem [22]: 

Theorem 7: 
Consider the mp-QP problem (108) – (109) with 0H  defined on a hypercube X  
such that XX f . Define RKKQ T , assume 0 , and let  be the largest 

positive number for which the ellipsoid xxXxE T
f |  is contained in . 

Moreover, assume the tolerance  satisfies: 

2
0 00 xxT

 
(138) 

where xxx T

Xx 0

minarg0 . Then the approximate explicit MPC computed by Algo-

rithm 3 in closed loop with (87) makes the origin asymptotically stable for all 
fXx )0( , and the state and input trajectories are feasible. 

  

5.5 Example 

Consider the double integrator from section 4.3.2. With horizon N=10 and 13.0 , 
Algorithm 3 gives the quad-tree partition in Fig.12 with 214 regions. The method 
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based on the cost function approximation error [22] is used. The sets E and , to-
gether with the control and state trajectories obtained with the exact and the approxi-
mate approaches are shown in Fig.13. The solid and dashed curves show an exact and 
approximate trajectory, respectively. We observe that the discrepancy between them 
is negligible. 
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Fig. 12. Quad-tree partition for the double integrator with N=10. 
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Fig. 13. Top, left: Sets E and . Top, right: Control input. Bottom, left: State x1. Bottom, 
right: State x2. 
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The k – d tree partition for the double integrator, obtained by applying the method 
based on the control input approximation error [23] and using the heuristic splitting 
rule, is given in Fig.14. It can be seen that a significant reduction in complexity is 
achieved (the state space partition has 97 regions). The relative tolerance in control 
input error is 5.0r . 
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Fig. 14. k – d tree partition for the double integrator with N=10. 

It is interesting to compare the structure of the partitions of the approximate PWL ex-
plicit MPC feedback laws with the partitions of the exact PWL explicit MPC feed-
back law, as shown in Fig.10 for the case of horizon N=10. In parts of the state space 
where the exact partition contains several smaller regions while the approximate parti-
tion contains only a few large regions, the explanation is that the approximate ap-
proach only considers the first sample of the control input and is able to reduce com-
plexity. In parts of the state space where the opposite is true, i.e. the approximate 
partition is more complex, this is due to a structural mismatch because the orthogonal-
ity of the hyperplanes of the approximate partition is enforced. 

The exact partition in Fig.10 contains 191 polyhedral regions and is thus of compa-
rable complexity to the approximate partitions. Still, it is clear that there will be sig-
nificantly higher demand for real-time processing capacity and computer memory, 
since all hyperplanes in the partition are different and they are not orthogonal. This 
also holds if a search tree is constructed from the exact partition as proposed in [26]. 
In this case there will be 9 levels in the tree and 60 arithmetic operations are required 
to compute the exact solution, while about 3150 numbers must be stored in real-time 
computer memory. With the suggested approach, 18 arithmetic operations are suffi-
cient, and only about 700 numbers must be stored for the partition with 97 regions. Of 
course, the price to be paid for this complexity reduction is an approximation error. 

As in [21] we remark that there is a significant difference between the exact and 
approximate approaches when the complexity of the partition is viewed as a function 
of the horizon. While the number of regions with the exact approach seems to give a 
very rapid growth with N, [19], the approximate approach gives a partition complex-
ity that is almost independent of the horizon N. One reason for this is that in the ap-
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proximate approach it is taken into account that we only need the first sample of the 
input trajectory in order to implement the MPC. 

5.6 Robust Approximate Explicit Model Predictive Control in the Presence of 
Bounded Disturbances 

Some of the exact mp-QP approaches have been further extended to ensure robustness 
of the explicit MPC controllers against disturbances [28,29,30,31]. In [29] it is as-
sumed that the disturbance input belongs to a compact polyhedral set, and the ap-
proach in [32] is applied to ensure feasible operation of the MPC controller that 
minimizes the nominal value of the performance index. This work has been further 
extended to proportional integral controllers [31]. In [28], an approach to explicit so-
lution of robust MPC problems based on a min-max formulation with a performance 
index expressed in -norm has been proposed. It has to be mentioned however, that 
solution obtained by optimizing the worst value of the performance criterion can be 
quite conservative. In [30], it is supposed that the uncertainty set is a polytope and it 
is described how a class of uncertain quadratic and linear optimization problems can 
be converted to a multi-parametric quadratic programming (mp-QP) or multi-
parametric linear programming (mp-LP) problems by solving as many linear pro-
grams (LPs) as there are constraints in the optimization problem without uncertainty. 
It is also shown in [30] that if the uncertainty set is given by upper and lower bounds 
only, then this transformation can be done by simply computing the 1-norms of the 
rows of the matrix by which the uncertainty enters the constraint. 

In this section, an approximate mp-QP approach to explicit solution of constrained 
linear MPC problems in the presence of bounded disturbances is described [33]. It is 
based on an orthogonal search tree structure of the state space partition and thus 
represents an extension of the approximate mp-QP approach [22]. Like in [29], the 
explicit MPC controller avoids conservativeness by minimizing the nominal value of 
the performance index and it is robust in the sense that all constraints are satisfied for 
all possible disturbance realizations within the specified range. Here we consider a 
special case where the set of the disturbance inputs represents a hyper-rectangle that 
includes the origin in its interior. Based on this assumption, the conditions which 
guarantee feasible operation of the MPC controller are derived in a way similar to that 
in [30] and the original mp-QP problem with disturbance input is converted into an 
mp-QP problem without disturbances.  

Problem formulation: 
Consider the linear discrete-time system: 

)()(
)()()()1(

tCxty
tTtButAxtx

 
(139) 

where ntx )( , mtu )( , and pty )(  are the state, input and output variable, 
)(t  is the disturbance input that is assumed to belong to a bounded polyhedral        

set sAt)( . Also, nnA , mnB , npC  and snT .                

Let BTT
Nt

T
t 1,...,  is a disturbance realization, with 
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sNAAAB ... . It is assumed that a full measurement of the state 
)(tx  is available at the current time t. Then, for the current )(tx , MPC solves the op-

timization problem: 

)),(,(min)),((
1,...,

* txUJtxV
Ntt uuU

 (140) 

subject to )(| txx tt  and: 

Nkyyy tkt ,...,1,max|min  (141) 

1,...,1,0,maxmin Nkuuu kt  (142) 

tNtx |  (143) 

0,,||1 kTBuAxx A
ktktkttkttkt  (144) 

0,|| kCxy tkttkt  (145) 

with the cost function given by: 

tNttNt
T

N

k
ktkt

T
tkttkt

T PxxRuuQxxtxUJ ||

1

0
||)),(,(  

(146) 

and symmetric 0R , 0Q . We assume ),( BA  is stabilizable, ),( QA  is observ-
able,  is a polyhedral terminal set, and the final cost matrix 0P  is the solution of 
the associated algebraic Riccati equation. It is also assumed minmax 0 uu , 

minmax 0 yy , such that the origin is an interior point in the feasible set 

)}145()141(satisfying|)({ UtxX n
f . Here, we consider the nominal optimi-

zation criterion: 

)),(,(min))((
1,...,

* N

uuUnom txUJtxV
Ntt

 (147) 

corresponding to 0)( Nt , where N  is the nominal value of the disturbance 
input. In this problem formulation, the robustness is defined in terms of satisfaction of 
the output and input constraints (141) and (142) under all possible disturbance realiza-
tions B  that influence the state of the system (equation (144)). 

By substituting: 
1

0
1

1

0
1| )(

k

j
jkt

j
k

j
jkt

jk
tkt TABuAtxAx  

(148) 
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in the constraints (141) – (145), they can be represented in the form: 
BEtxEWGU ,)( 21 , (149) 

where mNTT
Nt

T
t uuU 1,...,  is the optimization vector and B  is the distur-

bance realization. Then the nominal optimization criterion (147) is rewritten as: 

FUtxHUUtYxtxtxV TT

U

T
nom )(

2
1min)()(

2
1))((*  

(150) 

We apply the same idea as in [30] of pre-stabilizing (139) with a linear state feedback 
gain and optimizing over a sequence of perturbations to this control law. Thus, we de-
fine: 

ztxFHU T )(1  (151) 

where mNz  is the control input perturbation. Then, the optimization problem 
(150) subject to constraint (149) is transformed into the following mp-QP problem: 

HzzxV T

znomz 2
1min)(*

,  
(152) 

subject to: 
BStxSWGz ,)( 21 . (153) 

Assumption 1: 
The disturbance input set: 

ULsA |  (154) 

represents a hyper-rectangle that includes the origin in its interior. 
Definition 8: 

Consider the i-th constraint defined by iG , iW , iS1 , iS2  rows of the matrices G , W , 

1S , 2S . The worst disturbance realization for the i-th constraint, denoted by Bi~  
is one which solves the linear program: 

}{min~
22
iii SS

B
 (155) 

Remark 1: 
The linear program (155) can be easily solved by exploiting the fact that disturbance 
input set is a hyper-rectangle. Thus: 

sN

j

U
j

i
j

L
j

i
jj

i
j

sN

j

sN

j
j

i
j

i SSSSS
U
jj

L
j

BB
1

,2,2,2
11

,22 ,minminmin}{min  
(156) 
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where i
jS ,2  is the j-th element of the row vector iS2 , j  is the j-th element of the col-

umn vector of disturbance realization sNB , and L
j , U

j  are respectively 
the lower and upper bounds of j . 

Lemma 2: 
If there exists an affine function )(xz  that satisfies the following constraint: 

xSWGz 1
~ , (157) 

where the i-th row of the matrix W~  is determined by: 

iiii SWW ~~
2  (158) 

and where Bi~  is the worst disturbance realization for the i-th constraint, then 
this implies that )(xz  will satisfy constraint (153) for all possible disturbance realiza-

tions B . Such )(xz  is referred to as robustly feasible. 
  

In this way, the constraint (157) which ensures robust feasibility can be easily con-
structed. Then, the original mp-QP problem (152) – (153) becomes: 

HzzxV T

znomz 2
1min)(*

,  
(159) 

subject to: 

)(~
1 txSWGz , (160) 

where W~  is determined by (158). Thus the original mp-QP problem with disturbance 
input (problem (152) – (153)) is reformulated as an mp-QP problem without distur-
bance (problem (159) – (160)) and therefore the approximate approach [22] for ex-
plicit solution of mp-QP problems can easily be applied to this problem. It has to be 
stressed that the approximate approach [22] guarantees that the optimal solution is 
feasible in sense that it will satisfy constraint (160). This directly implies by Lemma 2 
above that constraint (153) of the original mp-QP problem will be satisfied for all 
possible disturbance realizations. This is summarized in the following Lemma: 

Lemma 3 (feasible control in the presence of disturbance): 
Consider the bounded polyhedron 0X  with vertices Mvvv ,...,, 21 . If 0K  and 0g  
solve the QP: 

M

i
ii

T
iigK

gvKvzHgvKvz
1

00
*

00
*

,
)()(min

00

 
(161) 

subject to: 

MivSWgvKG ii ,...,2,1,~
100 , (162) 
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then the least squares approximation 000 )(ˆ gxKxz  is robustly feasible for the mp-

QP (152) – (153) for all 0Xx  and all disturbance realizations B . 
  

Example: 
Consider the double integrator: 

)()()()1( tTtButAxtx  (163) 

with: 

10
01

,,
10

1 2

T
T
T

B
T

A
s

ss  
(164) 

where the sampling interval is 3.0sT . Consider the MPC problem with horizon 
30N . The cost matrices are )0,1(diagQ , 1R , and the matrix 0P  is given 

as the solution of the algebraic Riccati equation. The constraints are: 

11 u  (165) 

5.05.0 2x . (166) 

The disturbance vector T][ 21  has the following bounds: 

01.0)(01.0 1 t  (167) 

015.0)(015.0 2 t  (168) 

The approximation tolerance 0  is chosen according to Theorem 7, with 1.0 . 
The state space partition of the robust approximate MPC controller is shown in 
Fig.15. 
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Fig. 15. k – d tree partition of the robust MPC. 
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It has 172 regions and 11 levels of search. With one scalar comparison required at 
each level of the k-d tree, 11 arithmetic operations are required in the worst case to 
determine which region the state belongs to. Totally, 15 arithmetic operations are 
needed in real-time to compute the control input with this MPC controller (11 com-
parisons, 2 multiplications and 2 additions). 

In Fig.16, the sets , E  and S  ( S  is the terminal region to which the state 
converges), and disturbance realizations with constant magnitude are given. In Fig.17, 
the control and state trajectories obtained with the robust MPC under these distur-
bances are shown (the trajectories with the exact mp-QP approach are given for com-
parison). The approximate and the exact state trajectories are also depicted in Fig.16, 
where it can be seen that with the increase of time the state enters and remains in the 
terminal region S . It can be seen from the above figures that the robust MPC keeps 
all constraints imposed on the system. 
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Fig. 16. Left: The sets , E , S , the approximate (the solid curve) and the exact (the dashed 
curve) state trajectories. Right: Disturbance inputs with constant magnitude. 
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Fig. 17. Control input and state trajectories for the robust MPC (the solid curves are with the 
approximate controller and the dashed curves are with the exact controller). 
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In Fig.18, the sets , E  and S , and disturbance realizations with decreasing 
magnitude are given. 
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Fig. 18. Left: The sets , E , S , the approximate (the solid curve) and the exact (the dashed 
curve) state trajectories. Right: Disturbance inputs with decreasing magnitude. 

In Fig.19, the closed loop response of the robust MPC under these disturbances is 
shown. This response is also depicted in Fig.18, where it can be noticed that in the 
case of decreasing magnitude disturbance, the state approaches the origin when time 
increases. Again, it can be seen that the robust MPC keeps all constraints imposed on 
the system. 

 

0 10 20 30 40 50 60 70 80 90 100
-1 

-0.8 

-0.6 

-0.4 

-0.2 

0 

0.2 

0.4 
u(t) 

time instants  

 

0 10 20 30 40 50 60 70 80 90 100 
-0.5

0

0.5

1

1.5

2

2.5

3

x1(t), x2(t)

time instants

x1

x2

 

Fig. 19. Control input and state trajectories for the robust MPC (the solid curves are with the 
approximate controller and the dashed curves are with the exact controller). 

5.7 Explicit Model Predictive Control of Gas-Liquid Separation Plant 

This section considers the design of approximate explicit MPC controller for a gas-
liquid separation plant (Fig.20) and the experimental evaluation of controller per-
formance [34]. 
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Fig. 20. Process scheme of the separation unit. 

The gas-liquid separation is a sub-process within a semi-industrial installation which 
is used for reduction of NOx in effluent gasses and technological waste water treat-
ment by means of neutralisation with CO2 contained in flue gasses [35]. The role of 
the separation unit is to capture flue gasses under low pressure from effluent channels 
by means of water flow and to carry them over under high enough pressure to the 
downstream (neutralisation) stage. The flue gasses coming from the effluent channels 
are “pooled” by the water flow into the water circulation pipe through the injector I1. 
The water flow is generated by the pump P1 (water ring). The speed of the pump is 
kept constant. The pump feeds the mixture of water and gas into the separator R1 
where gas is separated from water. Hence, the accumulated gas in R1 forms a sort of 
“gas cushion” with increased internal pressure. Owing to this pressure, the flue gas is 
blown out from R1 into the next neutralization unit. On the other side the “cushion” 
forces water to circulate back to the reservoir R2. The quantity of water in the circuit 
is constant. If for some reason additional water is needed, the water supply path 
through the valve V5 is utilized. 

The complete non-linear model of the gas-liquid separator is given in [35]. A lin-
earized model can be obtained from the existing non-linear model: 

2

1

1

1

1

1

v
v

B
h
p

A
h
p

cc , 
(169) 

where 1p  and 1h  denote the change of separator gas pressure 1p  and liquid level 

1h  from the steady-state values ( sppp 111 , shhh 111 ), and 1v  and 2v  are 
respectively the changes in the positions 1v  and 2v  of the two valves 
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( svvv 111 , svvv 222 ). The linear model corresponds to the following steady 
state: 

7462.0,4152.0,4.1,5.0 2111 ssss vvmhbarp  (170) 

and the way to compute the elements of the matrices cA  and cB  is given in details in 
[35]. From the continuous-time model, a linear discrete-time model corresponding to 
sampling interval sTs 1  is obtained, with the following state and control matrices: 

0.0023-0
0.0041-0.0832-

,
0.99990.0006-
0.0001-0.9719

BA . 
(171) 

The state variables are ][11 barpx  and ][12 mhx , and the control variables are 

11 vu  and 22 vu . The following input and rate constraints are imposed on the 
valve positions 1v  and 2v : 

8625.00,10 21 vv  (172) 

66.033.0,66.033.0 21 vv , (173) 

which by taking into account the steady state values (170) are represented as the fol-
lowing constraints on the control inputs 1u  and 2u : 

1-0,1,...,
0.1163)(0.7462-

0.5848)(-0.4152

2

1

Nk
ktu

ktu
 

(174) 

1-,1,...,0
66.0)1()(33.0

66.0)1()(33.0

22

11

Nk
TktuktuT

TktuktuT

ss

ss

. 
(175) 

In order to avoid the steady state offset of the model predictive controller, two more 
states are added to the model (171), which take into account the integral error: 

)()()1(,)()()1( 244133 txTtxtxtxTtxtx ss . (176) 

Thus, the linear discrete-time model of the gas-liquid separation unit becomes: 

00
00

0.0023-0
0.0041-0.0832-

,

100
010
000.99990.0006-
000.0001-0.9719

B

T
T

A

s

s

. 

(177) 

The approximate mp-QP approach described in section 5.3 (based on cost function 
approximation error) is applied to design an explicit MPC controller for the gas-liquid 
separation plant [34]. The MPC controller solves the optimization problem (90) sub-
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ject to the system equation (177) and the input constraints (174). The rate constraints 
(175) are not taken into account during the design of the MPC controller. Instead, a 
rate limiter is placed at the output of the controller in its real-time implementation, 
that guarantees the satisfaction of the rate constraints. In (90), P is chosen as the solu-
tion of the discrete algebraic Riccati equation and the cost matrices are: 

}1,1{diag,}0001.0,005.0,100,05.0{diag RQ . (178) 

The horizon is 500N  and the time instants at which the input variables can change 
are: 

]310308306304302300110108106104

10210050454035302520151051[
1uN

 
(179) 

]30010050454035302520151051[
2uN  (180) 

which makes totally 36 optimization variables. The state space to be partitioned is 4-
dimensional and is defined by ]60,10[]3,3[]2.0,2.0[]5.0,5.0[X . The size 
of the regions on each of the state variables is restricted to be larger than 01.01x , 

004.02x , 06.03x  and 7.04x . The approximation tolerance 0  is cho-
sen according to Theorem 7 with 5.0 . 

The resulting MPC controller has 2693 regions in its state space partition and 24 
levels of search. With one scalar comparison required at each level of the k-d tree, 24 
arithmetic operations are required in the worst case to determine which region the 
state belongs to. Totally, 40 arithmetic operations are needed in real-time to compute 
the two control inputs with this MPC controller (24 comparisons, 8 multiplications 
and 8 additions). 

The real-time experiments were pursued in the environment schematically shown 
in Fig.21 [34]. This environment encompasses supervisory control on two levels: up-
per level with Factory Link SCADA system and lower procedural and basic control 
levels implemented in two PLCs. This is one of the possible configurations of control, 
which can be found in industry. User-friendly experimentation with the process plant 
is enabled through interface with Matlab/Simulink environment. This interface en-
ables PLC access with Matlab/Simulink using DDE protocol via Serial Communica-
tion Link RS232 or TCP/IPv4 over Ethernet IEEE802.3. Control algorithms for ex-
perimentation can be prepared in Matlab code or as Simulink blocks and extended 
with functions/blocks, which access PLC. This interface also enables user-friendly 
data acquisition for Matlab users. In our case all control schemes were put together as 
Simulink blocks and tested at the plant operating points. 

In Fig.22 and Fig.23, the real-time performance of the approximate explicit MPC 
controller, in closed-loop with the plant is shown. The set point is barpp s 5.01

*
1  

and mhh s 4.11
*
1 . The set point changes are handled by using the new set-point 

values *
1p  and *

1h  when determining the values of the state variables *
111 ppx  and 

*
112 hhx , where 1p  and 1h  are the measured variables. 
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Fig. 21. Scheme showing environment for control and experimentation. 
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Fig. 22. Left: Trajectory of v1 (position of valve 1). Right: Trajectory of v2 (position of valve 2). 
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Fig. 23. Left: Trajectory of p1 (pressure in the separator). Right: Trajectory of h1 (liquid level in 
the separator). 

The experimental results (the solid line) are compared with the exact MPC trajec-
tory (the dotted line) computed by solving the optimization problem at each time in-
stant, based on the process model and with the simulated approximate trajectory (the 
dashed line). The latter two curves (the dotted curve and the dashed curve) are diffi-
cult to distinguish since they are almost matching. It can be seen from the figures that 
the explicit MPC controller brings the plant to the desired set-point despite of the 
error in the steady state process model and the transient performance is close to that of 
the optimal trajectory. It can be seen from Fig.22 that there is a slight chattering of the 
signal for the second valve. This can be explained as follows. The signal we depict 
has come out of analog digital converter which has 10 bit A/D converter resolution 
that means approximately 0.1% of quantization noise on the range 0 to 1 which was 
used in our case. Afterwards, this signal has gone through the controller with gain of 
about 10 which amplified the quantization noise to about 1% (as it can be seen in 
Fig.22). This is not a problem for the valve and actually even helps beating the small 
dead zone contained in valve and makes it react faster when the change of control 
signal occurs. 

  

Fig. 24. Left: PWL approximate feedback control law for valve position v1. Right: PWL exact 
feedback control law for valve position v1. 

In Fig.24, the approximate and the exact PWL feedback control laws for valve po-
sition 1v  are shown. The approximate and the exact control laws for valve position 2v  
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are shown in Fig.25. These control laws correspond to value zero of the two integral 
errors in the system equation (177), i.e. 03x  and 04x . 

  

Fig. 25. Left: PWL approximate feedback control law for valve position v2. Right: PWL exact 
feedback control law for valve position v2. 
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Abstract. While there is strong motivation for using Gaussian Pro-
cesses (GPs) due to their excellent performance in regression and classi-
fication problems, their computational complexity makes them imprac-
tical when the size of the training set exceeds a few thousand cases. This
has motivated the recent proliferation of a number of cost-effective ap-
proximations to GPs, both for classification and for regression. In this
paper we analyze one popular approximation to GPs for regression: the
reduced rank approximation. While generally GPs are equivalent to in-
finite linear models, we show that Reduced Rank Gaussian Processes
(RRGPs) are equivalent to finite sparse linear models. We also intro-
duce the concept of degenerate GPs and show that they correspond to
inappropriate priors. We show how to modify the RRGP to prevent it
from being degenerate at test time. Training RRGPs consists both in
learning the covariance function hyperparameters and the support set.
We propose a method for learning hyperparameters for a given sup-
port set. We also review the Sparse Greedy GP (SGGP) approximation
(Smola and Bartlett, 2001), which is a way of learning the support set for
given hyperparameters based on approximating the posterior. We pro-
pose an alternative method to the SGGP that has better generalization
capabilities. Finally we make experiments to compare the different ways
of training a RRGP. We provide some Matlab code for learning RRGPs.

1 Motivation and Organization of the Paper

Gaussian Processes (GPs) have state of the art performance in regression and
classification problems, but they suffer from high computational cost for learning
and predictions. For a training set containing n cases, the complexity of training
is O(n3) and that of making a prediction is O(n) for computing the predictive
mean, and O(n2) for computing the predictive variance.

A few computationally effective approximations to GPs have recently
been proposed. These include the sparse iterative schemes of Csató (2002),
Csató and Opper (2002), Seeger (2003), and Lawrence et al. (2003), all based
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on minimizing KL divergences between approximating and true poste-
rior; Smola and Schölkopf (2000) and Smola and Bartlett (2001) based
on low rank approximate posterior, Gibbs and MacKay (1997) and
Williams and Seeger (2001) on matrix approximations and Tresp (2000)
on neglecting correlations. Subsets of regressors (Wahba et al., 1999) and
the Relevance Vector Machine (Tipping, 2001) can also be cast as sparse
linear approximations to GPs. Schwaighofer and Tresp (2003) provide a very
interesting yet brief comparison of some of these approximations to GPs. They
only address the quality of the approximations in terms of the predictive mean,
ignoring the predictive uncertainties, and leaving some theoretical questions
unanswered, like the goodness of approximating the maximum of the posterior.

In this paper we analyze sparse linear or equivalently reduced rank approx-
imations to GPs that we will call Reduced Rank Gaussian Processes (RRGPs).
We introduce the concept of degenerate Gaussian Processes and explain that
they correspond to inappropriate priors over functions (for example, the predic-
tive variance shrinks as the test points move far from the training set). We show
that if not used with care at prediction time, RRGP approximations result in
degenerate GPs. We give a solution to this problem, consisting in augmenting
the finite linear model at test time. This guarantees that the RRGP approach
corresponds to an appropriate prior. Our analysis of RRGPs should be of inter-
est in general for better understanding the infinite nature of Gaussian Processes
and the limitations of diverse approximations (in particular of those based solely
on the posterior distribution).

Learning RRGPs implies both selecting a support set, and learning the hy-
perparameters of the covariance function. Doing both simultaneously proves to
be difficult in practice and questionable theoretically. Smola and Bartlett (2001)
proposed the Sparse Greedy Gaussian Process (SGGP), a method for learning
the support set for given hyperparameters of the covariance function based on
approximating the posterior. We show that approximating the posterior is un-
satisfactory, since it fails to guarantee generalization, and propose a theoretically
more sound greedy algorithm for support set selection based on maximizing the
marginal likelihood. We show that the SGGP relates to our method in that
approximating the posterior reduces to partially maximizing the marginal like-
lihood. We illustrate our analysis with an example. We propose an approach for
learning the hyperparameters of the covariance function of RRGPs for a given
support set, originally introduced by Rasmussen (2002). We also provide Matlab
code in Appendix B for this method.

We make experiments where we compare learning based on selecting the
support set to learning based on inferring the hyperparameters. We give special
importance to evaluating the quality of the different approximations to comput-
ing predictive variances.

The paper is organized as follows. We give a brief introduction to GPs in
Sect. 2. In Sect. 3 we establish the equivalence between GPs and linear models,
showing that in the general case GPs are equivalent to infinite linear models.
We also present degenerate GPs. In Sect. 4 introduce RRGPs and address the
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issue of training them. In Sect. 5 we present the experiments we conducted. We
give some discussion in Sect. 6.

2 Introduction to Gaussian Processes

In inference with parametric models prior distributions are often imposed over
the model parameters, which can be seen as a means of imposing regularity and
improving generalization. The form of the parametric model, together with the
form of the prior distribution on the parameters result in a (often implicit) prior
assumption on the joint distribution of the function values. At prediction time
the quality of the predictive uncertainty will depend on the prior over functions.
Unfortunately, for probabilistic parametric models this prior is defined in an
indirect way, and this in many cases results in priors with undesired properties.
An example of a model with a peculiar prior over functions is the Relevance
Vector Machine introduced by Tipping (2001) for which the predictive variance
shrinks for a query point far away from the training inputs. If this property
of the predictive variance is undesired, then one concludes that the prior over
functions was undesirable in the first place, and one would have been happy to
be able to directly define a prior over functions.

Gaussian Processes (GPs) are non-parametric models where a Gaussian
process3 prior is directly defined over function values. The direct use of Gaus-
sian Processes as priors over functions was motivated by Neal (1996) as he was
studying priors over weights for artificial neural networks. A model equivalent to
GPs, kriging, has since long been used for analysis of spatial data in Geostatis-
tics (Cressie, 1993). In a more formal way, in a GP the function outputs f(xi)
are a collection random variables indexed by the inputs xi. Any finite subset of
outputs has a joint multivariate Gaussian distribution (for an introduction on
GPs, and thorough comparison with Neural Networks see (Rasmussen, 1996)).
Given a set of training inputs {xi|i = 1, . . . , n} ⊂ RD (organized as rows in
matrix X), the joint prior distribution of the corresponding function outputs
f = [f(x1), . . . , f(xn)]� is Gaussian p(f |X, θ) ∼ N (0, K), with zero mean (this
is a common and arbitrary choice) and covariance matrix Kij = K(xi, xj). The
GP is entirely determined by the covariance function K(xi, xj) with parame-
ters θ.

An example of covariance function that is very commonly used is the squared
exponential:

K(xi, xj) = θ2
D+1 exp

(
−1

2

D∑
d=1

1
θ2

d

(Xid − Xjd)2
)

. (1)

θD+1 relates to the amplitude of the functions generated by the GP, and θd is
a lengthscale in the d-th dimension that allows for Automatic Relevance De-
termination (ARD) (MacKay, 1994; Neal, 1996): if some input dimensions are
3 We will use the expression “Gaussian Process” (both with capital first letter) or

“GP” to designate the non-parametric model where a Gaussian process prior is
defined over function values
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un-informative about the covariance between observed training targets, their as-
sociated θd will be made large (or effectively infinite) and the corresponding input
dimension will be effectively pruned from the model. We will call the parameters
of the covariance function hyperparameters, since they are the parameters of the
prior.

In general, inference requires choosing a parametric form of the covariance
function, and either estimating the corresponding parameters θ (which is named
by some Maximum Likelihood II, or second level of inference) or integrating them
out (often through MCMC). We will make the common assumption of Gaussian
independent identically distributed output noise, of variance σ2. The training
outputs y = [y1, . . . , yn]� (or targets) are thus related to the function evaluated
at the training inputs by a likelihood distribution4 p(y|f , σ2) ∼ N (f , σ2 I), where
I is the identity matrix. The posterior distribution over function values is useful
for making predictions. It is obtained by applying Bayes’ rule:5

p(f |y, X, θ, σ2) =
p(y|f , σ2) p(f |X, θ)

p(y|X, θ, σ2)

∼ N
(
K� (K + σ2 I

)−1
y, K − K� (K + σ2 I

)−1
K
)

.

(2)

The mean of the posterior does not need to coincide with the training targets.
This would be the case however, if the estimated noise variance happened to be
zero, in which case the posterior at the training cases would be a delta function
centered on the targets.

Consider now that we observe a new input x∗ and would like to know the
distribution of f(x∗) (that we will write as f∗ for convenience) conditioned on
the observed data, and on a particular value of the hyperparameters and of the
output noise variance. The first thing to do is to write the augmented prior over
the function values at the training inputs and the new function value at the new
test input:

p

([
f
f∗

]∣∣∣∣x∗, X, θ

)
∼ N

(
0,

[
K k∗
k�
∗ k∗∗

])
, (3)

where k∗ = [K(x∗, x1), . . . , K(x∗, xn)]� and k∗∗ = K(x∗, x∗). Then we can
write the distribution of f∗ conditioned on the training function outputs:

p(f∗|f , x∗, X, θ) ∼ N (k ∗� K−1f , k∗∗ − k ∗� K−1k∗
)

. (4)

The predictive distribution of f∗ is obtained by integrating out the training
function values f from (4) over the posterior distribution (2). The predictive
distribution is Gaussian:

p(f∗|y, x∗, X, θ, σ2) =
∫

p(f∗|f , x∗, X, θ) p(f |y, X, θ, σ2) df

∼ N (m(x∗), v(x∗)) ,

(5)

4 Notice that learning cannot be achieved from the likelihood alone: defining a prior
over function values is essential to learning.

5 In Sect. A.2 some algebra useful for deriving (2) is given: notice that the likelihood
p(y|f , σ2) is also Gaussian in f with mean y.
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with mean and variance given by:

m(x∗) = k�
∗
(
K + σ2 I

)−1
y , v(x∗) = k∗∗ − k�

∗
(
K + σ2 I

)−1
k∗ . (6)

Another way of obtaining the predictive distribution of f∗ is to augment the
evidence with a new element y∗ corresponding to the noisy version of f∗ and to
then write the conditional distribution of y∗ given the training targets y. The
variance of the predictive distribution of y∗ is equal to that of the predictive
distribution of f∗ (6) plus the noise variance σ2, while the means are identical
(the noise has zero mean).

Both if one chooses to learn the hyperparameters or to be Bayesian and
do integration, the marginal likelihood of the hyperparameters (or evidence of
the observed targets)6 must be computed. In the first case this quantity will
be maximized with respect to the hyperparameters, and in the second case it
will be part of the posterior distribution from which the hyperparameters will
be sampled. The evidence is obtained by averaging the likelihood over the prior
distribution on the function values:

p(y|X, θ, σ2) =
∫

p(y|f) p(f |X, θ) df ∼ N (0, K + σ2 I
)

. (7)

Notice that the evidence only differs from the prior over function values in a
“ridge” term added to the covariance, that corresponds to the additive Gaus-
sian i.i.d. output noise. Maximum likelihood II learning involves estimating the
hyperparameters θ and the noise variance σ2 by minimizing (usually for conve-
nience) the negative log evidence. Let Q ≡ (K + σ2 I

)
. The cost function and

its derivatives are given by:

L =
1
2

log |Q| + 1
2

y�Q−1y ,

∂L
∂θi

=
1
2

Tr
(

Q−1 ∂Q

∂θi

)
− y�Q−1 ∂Q

∂θi
Q−1y ,

∂L
∂σ2

=
1
2

Tr
(
Q−1

)− y�Q−1Q−1y ,

(8)

and one can use some gradient descent algorithm to minimize L (conjugate
gradient gives good results, Rasmussen, 1996).

For Gaussian processes, the computational cost of learning is marked by
the need to invert matrix Q and therefore scales with the cube of the number of
training cases (O(n3)). If Q−1 is known (obtained from the learning process), the
computational cost of making predictions is O(n) for computing the predictive
mean, and O(n2) for the predictive variance for each test case. There is a need
for approximations that simplify the computational cost if Gaussian Processes
are to be used with large training datasets.

6 We will from now on use indistinctly “marginal likelihood” or “evidence” to refer to
this distribution.
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3 Gaussian Processes as Linear Models

Gaussian Processes correspond to parametric models with an infinite number
of parameters. Williams (1997a) showed that infinite neural networks with cer-
tain transfer functions and the appropriate priors on the weights are equivalent
to Gaussian Processes with a particular “neural network” covariance function.
Conversely, any Gaussian Process is equivalent to a parametric model, that can
be infinite.

In Sect(s). 3.1 and 3.2 we establish the equivalence between GPs and linear
models. For the common case of GPs with covariance functions that cannot
be expressed as a finite expansion, the equivalent linear models are infinite.
However, it might still be interesting to approximate such GPs by a finite linear
model, which results in degenerate Gaussian Processes. In Sect. 3.3 we introduce
degenerate GPs and explain that they often correspond to inappropriate priors
over functions, implying counterintuitive predictive variances. We then show how
to modify these degenerate GPs at test time to obtain more appropriate priors
over functions.

3.1 From Linear Models to GPs

Consider the following extended linear model, where the model outputs are a lin-
ear combination of the response of a set of basis functions {φj(x)|j = 1, . . . , m} ⊂
[RD → R]:

f(xi) =
m∑

j=1

φj(xi)αj = φ(xi)α , f = Φα , (9)

where as earlier f = [f(x1), . . . , f(xn)]� are the function outputs. The weights
are organized in a vector α = [α1, . . . , αM ]�, and φj(xi) is the response of the
j-th basis function to input xi. φ(xi) = [φ1(xi), . . . , φm(xi)] is a row vector
that contains the response of all m basis functions to input xi and matrix Φ
(sometimes called design matrix ) has as its i-th row vector φ(xi). Let us define
a Gaussian prior over the weights, of the form p(α|A) ∼ N (0, A). Since f is a
linear function of α it has a Gaussian distribution under the prior on α, with
mean zero. The prior distribution of f is:

p(f |A, Φ) ∼ N (0, C) , C = ΦAΦ� . (10)

The model we have defined corresponds to a Gaussian Process. Now, if the
number of basis functions m is smaller than the number of training points n,
then C will not have full rank and the probability distribution of f will be an
elliptical pancake confined to an m-dimensional subspace in the n-dimensional
space where f lives (Mackay, 1997).

Let again y be the vector of observed training targets, and assume that
the output noise is additive Gaussian i.i.d. of mean zero and variance σ2.
The likelihood of the weights is then Gaussian (in y and in α) given by
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p(y|α, Φ, σ2) ∼ N (Φα, σ2 I). The prior over the training targets is then given
by

p(y|A, Φ, σ2) ∼ (0, σ2 I + C) , (11)

and has a full rank covariance, even if C is rank deficient.
To make predictions, one option is to build the joint distribution of the train-

ing targets and the new test function value and then condition on the targets.
The other option is to compute the posterior distribution over the weights from
the likelihood and the prior. Williams (1997b) refers to the first option as the
“function-space view” and to the second as the “weight-space view”. This dis-
tinction has inspired us for writing the next two sections.

The Parameter Space View. Using Bayes’ rule, we find that the posterior is
the product of two Gaussians in α, and is therefore a Gaussian distribution:

p(α|y, A, Φ, σ2) =
p(y|α, Φ, σ2) p(α|A)

p(y|A, Φ, σ2)
∼ N (μ, Σ) ,

μ = σ−2 Σ Φ� y , Σ =
[
σ−2 Φ�Φ + A−1

]−1
.

(12)

The maximum a posteriori (MAP) estimate of the model weights is given by
μ. If we rewrite this quantity as μ = [Φ�Φ + σ2 A]−1Φ�y, we can see that the
Gaussian assumption on the prior over the weights and on the output noise
results in μ being given by a regularized version of the normal equations. For a
new test point x∗, the corresponding function value is f∗ = φ(x∗)α; for making
predictions the α’s are drawn from the posterior. Since f∗ is linear in α, it is
quite clear that the predictive distribution p(f∗|y, A, Φ, σ2) is Gaussian, with
mean and variance given by:

m(x∗) = φ(x∗)�μ , v(x∗) = φ(x∗)�Σ φ(x∗) . (13)

We can rewrite the posterior covariance using the matrix inversion lemma
(see Appendix A.1) as Σ = A−A[σ2 I +ΦAΦ�]−1 A. This expression allows us
to rewrite the predictive mean and variance as:

m(x∗) = φ(x∗)�AΦ�[σ2 I + ΦAΦ�]−1y ,

v(x∗) = φ(x∗)�Aφ(x∗) − φ(x∗)�AΦ�[σ2 I + ΦAΦ�]−1ΦAφ(x∗) ,
(14)

which will be useful for relating the parameter space view to the GP view.

The Gaussian Process View. There exists a Gaussian Process that is equiv-
alent to our linear model with Gaussian priors on the weights given by (9). The
covariance function of the equivalent GP is given by:

k(xi, xj) = φ(xi)�Aφ(xj) =
m∑

k=1

m∑
l=1

Akl φk(xi)φl(xj) . (15)
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The covariance matrix of the prior over training function values is given by
K = ΦAΦ� and we recover the same prior as in (10). Taking the same noise
model as previously, the prior over targets is identical to (11).

Given a new test input x∗, the vector of covariances between f∗ and the
training function values is given by k∗ = ΦAφ(x∗) and the prior variance of f∗
is k∗∗ = φ(x∗)Aφ(x∗). Plugging these expressions into the equations for the
predictive mean and variance of a GP (6) one recovers the expressions given by
(14) and (13). The predictive mean and variance of a GP with covariance function
given by (15) are therefore identical to the predictive mean and variance of the
linear model.

A fundamental property of the GP view of a linear model is that the set of
m basis functions appear exclusively as inner products. Linear models where m
is infinite are thus tractable under the GP view, provided that the basis func-
tions and the prior over the weights are appropriately chosen. By appropriately
chosen we mean such that a generalized dot product exists in feature space, that
allows for the use of the “kernel trick”. Schölkopf and Smola (2002) provide with
extensive background on kernels and the “kernel trick”.

Let us reproduce here an example given by Mackay (1997). Consider a one-
dimensional input space, and let us use squared exponential basis functions
φc(xi) = exp(−(xi − c)/(2λ2)), where c is a given center in input space and
λ is a known lengthscale. Let us also define an isotropic prior over the weights,
of the form A = σ2

α I. We want to make m go to infinity, and assume for simplic-
ity uniformly spaced basis functions. To make sure that the integral converges,
we set variance of the prior over the weights to σ2

α = s/Δm, where Δm is the
density of basis functions in the input space. The covariance function is given
by:

k(xi, xj) = s

∫ cmax

cmin

φc(xi)φc(xj) dc ,

= s

∫ cmax

cmin

exp
[
− (xi − c)2

2λ2

]
exp
[
− (xj − c)2

2λ2

]
dc .

(16)

Letting the limits of the integral go to infinity, we obtain the integral of the
product of two Gaussians (but for a normalization factor), and we can use the
algebra from Sect. A.2 to obtain:

k(xi, xj) = s
√

πλ2 exp
[
− (xi − xj)2

4λ2

]
, (17)

which is the squared exponential covariance function that we presented in (1).
We now see that a GP with this particular covariance function is equivalent to
a linear model with infinitely many squared exponential basis functions.

In the following we will show that for any valid covariance function, a GP
has an equivalent linear model. The equivalent linear model will have infinitely
many weights if the GP has a covariance function that has no finite expansion.
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3.2 From GPs to Linear Models

We have just seen how to go from any linear model, finite or infinite, to an
equivalent GP. We will now see how to go the opposite way, from an arbitrary
GP to an equivalent linear model, which will in general be infinite and will be
finite only for particular choices of the covariance function.

We start by building a linear model where all the function values consid-
ered (training and test inputs) are equal to a linear combination of the rows of
the corresponding covariance matrix of the GP we wish to approximate, com-
puted with the corresponding covariance function K(xi, xj). As in Sect. 2, the
covariance function is parametrized by the hyperparameters θ. A Gaussian prior
distribution is defined on the model weights, with zero mean and covariance
equal to the inverse of the covariance matrix:[

f
f∗

]
=
[
K k∗
k�∗ k∗∗

]
·
[
α
α∗

]
, p

([
α
α∗

]∣∣∣∣x∗, X, θ

)
∼ N

(
0,

[
K k∗
k�∗ k∗∗

]−1
)

. (18)

To compute the corresponding prior over function values we need to integrate
out the weights [α, α∗]� from the left expression in (18) by averaging over the
prior (right expression in (18)):

p

([
f
f∗

]∣∣∣∣x∗, X, θ

)
=
∫

δ

([
f
f∗

]
−
[
K k∗
k�∗ k∗∗

]
·
[
α
α∗

])
p

([
α
α∗

]∣∣∣∣x∗, X, θ

)
dα

∼ N
(

0,

[
K k∗
k�
∗ k∗∗

])
,

(19)
and we recover exactly the same prior over function values as for the Gaussian
Process, see (3).

Notice that for the linear model to correspond to the full GP two requirements
need to be fulfilled:

1. There must be a weight associated to each training input.
2. There must be a weight associated to each possible test input.

Since there are as many weights as input instances, we consider that there is an
infinite number of weights of which we only use as many as needed and qualify
such a linear model of infinite.

Of course, for covariance functions that have a finite expansion in terms of
m basis functions, the rank of the covariance matrix will never be greater than
m and the equivalent linear model can be readily seen to be finite, with m basis
functions. A trivial example is the case where the covariance function is built
from a finite linear model with Gaussian priors on the weights. The linear model
equivalent to a GP is only infinite if the covariance function of the GP has no
finite expansion. In that case, independently of the number of training and test
cases considered, the covariance matrix of the prior (independently of its size)
will always have full rank.7

7 The covariance matrix can always be made rank deficient by replicating a function
value in the joint prior, but we do not see any reason to do this in practice.
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It becomes evident how one should deal with GPs that have an equivalent
finite linear model. If there are more training cases than basis functions, n > m,
then the finite linear model should be used. In the case where there are less
training cases than basis functions, m > n, it is computationally more interesting
to use the GP.

One strong motivation for the use of Gaussian Processes is the freedom to
directly specify the covariance function. In practice, common choices of GP priors
imply covariance functions that do not have a finite expansion. For large datasets,
this motivates the equivalent infinite linear model by a finite or sparse one. The
approximated GP is called Reduced Rank GP since its covariance matrix has a
maximum rank equal to the number of weights in the finite linear model.

We will see later in Sect. 4 that the finite linear approximation is built by
relaxing the requirement of a weight being associated to each training input,
resulting in training inputs with no associated weight. This relaxation should
only be done at training time. In the next Section we show the importance of
maintaining the requirement of having a weight associated to each test input.

3.3 “Can I Skip α∗?” or Degenerate Gaussian Processes

One may think that having just “as many weights as training cases” with no
additional weight α∗ associated to each test case gives the same prior as a full
GP. It does only for the function evaluated at the training inputs, but it does
not anymore for any additional function value considered. Indeed, if we posed
f = K α with a prior over the weights given by p(α|X, θ) ∼ N (0, K−1), we
would obtain that the corresponding prior over the training function values is
p(f |X, θ, σ2) ∼ N (0, K). It is true that the linear model would be equivalent to
the GP, but only when the function values considered are in f . Without addition
of α∗, the linear model and prior over function values are respectively given by:[

f
f∗

]
=
[
K
k�∗

]
· α , p

([
f
f∗

]∣∣∣∣x∗, X, θ

)
∼ N

(
0,

[
K k∗
k�∗ k�∗ K−1k∗

])
. (20)

The prior over the new function values f∗ differs now from that of the full
GP. Notice that the prior variance of f∗ depends on the training inputs: for the
common choice of an RBF-type covariance function, if x∗ is far from the training
inputs, then there is a priori no signal, that is f∗ is zero without uncertainty!
Furthermore, the distribution of f∗ conditioned on the training function outputs,
which for the full GP is given by (4), has now become:

p(f∗|f , x∗, X, θ) ∼ N (k�
∗ K−1f , 0

)
. (21)

Given f , any additional function value f∗ is not a random variable anymore,
since its conditional distribution has zero variance: f∗ is fully determined by f .

If α has a fixed finite size, the prior over functions implied by the linear
model ceases to correspond to the GP prior. The joint prior over sets of function
values is still Gaussian, which raises the question “is this still a GP?”. We choose
to call such a degenerate process a “degenerate Gaussian Process”.
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Fig. 1. Predictive standard deviation for a full GP (solid line) and for a degener-
ate GP (slash-dotted line). The hyperparameters θi are all set to 1. The crosses
indicate the horizontal location of the 5 training inputs.

Degenerate GPs produce a predictive distribution that has maximal variabil-
ity around the training inputs, while the predictive variance fades to the noise
level as one moves away from them. We illustrate this effect on Fig. 1. We plot
the predictive standard deviation of a full GP and its degenerate counterpart for
various test points. The training set consists of 5 points: both models have thus
5 weights associated to the training set. The full GP has an additional weight,
associated to each test point one at a time. Though it might be a reasonable
prior in particular contexts, we believe that it is in general inappropriate to have
smaller predictive variance far away from the observed data. We believe that ap-
propriate priors are those under which the predictive variance is reduced when
the test inputs approach training inputs. In the remaining of the paper we will
consider that appropriate priors are desirable, and qualify the prior correspond-
ing to a degenerate GP of inappropriate.

4 Finite Linear Approximations

As we have discussed in Sect. 3.1, a weight must be associated to each test case
to avoid inappropriate priors that produce inappropriate predictive error bars.
However, the requirement of each training case having a weight associated to
it can be relaxed. For computational reasons it might be interesting to approx-
imate, at training time, a GP by a finite linear model with less weights than
training cases. The model and the prior on the weights are respectively given
by:

f = Knm αm , p(αm|X, θ) ∼ N (0, K−1
mm) , (22)
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The subscripts m and n are used to indicate the dimensions: αm is of size n× 1
and Kmn of size m × n; in the following we will omit these subscripts where
unnecessary or cumbersome. Sparseness arises when m < n: the induced prior
over training function values is p(f |X, θ) ∼ N (0, Knm K−1

mm K�
nm

)
, and rank of

the covariance matrix is at most m. We call such an approximation a Reduced
Rank Gaussian Process (RRGP).

The m inputs associated to the weights in αm do not need to correspond to
training inputs. They can indeed be any set of arbitrary points in input space.
We will call such points support inputs (in recognition to the large amount of
work on sparse models done by the Support Vector Machines community). In
this paper we will adopt the common restriction of selecting the support set from
the training inputs. We discuss ways of selecting the support points in Sect. 4.4.

Learning an RRGP consists both in learning the hyperparameters of
the covariance function and in selecting the support set. In practice how-
ever, it is hard to do both simultaneously. Besides the technical difficul-
ties of the optimization process (observed for example by Csató (2002)),
there is the fundamental issue of having an excessive amount of flexibility
that may lead to overfitting (observed for example by Rasmussen (2002) and
Seeger et al. (2003)). Smola and Bartlett (2001) address the issue of selecting
the support set (Sect. 4.5), assuming that the covariance hyperparameters are
given. However, we show that they do this in a way that does not guarantee
generalization and we propose an alternative theoretically more sound approach
in Sect. 4.4. In the next Section we show how to learn the hyperparameters of
the covariance function for the RRGP for a fixed support set. We also show
how to make predictions under a degenerate GP, that is, without an additional
weight for the new test case, and with the inclusion of a new weight that ensures
appropriate predictive variances.

4.1 Learning a Reduced Rank Gaussian Process

The likelihood of the weights is Gaussian in y and is a linear combination of
αm, given by p(y|X, θ, αm, σ2) ∼ N (Knm αm, σ2 I), where σ2 is again the white
noise variance. The marginal likelihood of the hyperparameters of the full GP is
given by (7). For the sparse finite linear approximation, the marginal likelihood
is obtained by averaging the weights out of the likelihood over their prior:

p(y|X, θ, σ2) =
∫

p(y|X, θ, αm, σ2) p(αm|X, θ) dαm

∼ N (0, σ2 I + Knm K−1
mmK�

nm

)
.

(23)

As expected, for the case where the support set comprises all training inputs
and m = n, we recover the full Gaussian Process.

Let us define Q̃ ≡ [
σ2 I + Knm K−1

mmK�
nm

]
, the covariance of the RRGP

evidence. Maximum likelihood learning of the hyperparameters can be achieved
by minimizing the negative log evidence. The cost function and its derivatives are
given by (8) where Q is replaced by Q̃. Since the simple linear algebra involved
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can be tedious, we give here the explicit expression of the different terms. For
the terms involving log |Q̃| we have:

log |Q̃| = (n − m) log(σ2) + log
∣∣K�

nm Knm + σ2 Kmm

∣∣ ,

∂ log |Q̃|
∂θi

= Tr

[
Q̃−1 ∂Q̃

∂θi

]
= 2 Tr

[
∂Knm

∂θi
Z�
]
− Tr

[
K−1

mm K�
nm Z

∂Knm

∂θi

]
,

∂ log |Q̃|
∂σ2

=
n − m

σ2
+ Tr [Zmm] ,

(24)
where we have introduced Z ≡ Knm

[
K�

nm Knm + σ2 Kmm

]−1. For the terms
involving Q̃−1 we have:

y�Q̃−1y =
(
y�y − y� Z K�

nmy
)
/σ2 ,

∂y�Q̃−1y
∂θi

= y�Z
∂Kmm

∂θi
Z�y − 2y� (I − Z K�

nm

) ∂Knm

∂θi
Z� y/σ2 ,

∂y�Q̃−1y
∂σ2

= −y�y/σ4 + y� Z K�
nmy/σ4 + y�Z Kmm Z�y/σ2 .

(25)

The hyperparameters and the output noise variance can be learnt by using the
expressions we have given for the negative log marginal likelihood and its deriva-
tives in conjunction with some gradient descent algorithm. The computational
complexity of evaluating the evidence and its derivatives is O(nm2 + nDm),
which is to be compared with the corresponding cost of O(n3) for the full GP
model.

4.2 Making Predictions Without α∗

The posterior over the weights associated to the training function values is
p(αm|y, Kmn, σ2) ∼ N (μ, Σ) with:

μ = σ−2Σ K�
mny , Σ =

[
σ−2K�

mnKmn + Kmm

]−1
. (26)

At this point one can choose to make predictions right now, based on the pos-
terior of αm and without adding an additional weight α∗ associated to the
new test point x∗. As discussed in Sect. 3.3, this would correspond to a de-
generate GP, leading to inappropriate predictive variance. The predictive mean
on the other hand can still be a reasonable approximation to that of the GP:
Smola and Bartlett (2001) approximate the predictive mean exactly in this way.
The expressions for the predictive mean and variance, when not including α∗,
are respectively given by:

m(x∗) = k(x∗)�μ, v(x∗) = σ2 + k(x∗)�Σ k(x∗). (27)

k(x∗) denotes the m × 1 vector [K(x∗, x1), . . . , K(x∗, xm)]� of covariances be-
tween x∗ and at the m support inputs (as opposed to k∗ which is the n × 1
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vector of covariances between x∗ and at the n training inputs). Note that if no
sparseness is enforced, (m = n), then μ = (Knn + σ2 I)−1y and the predictive
mean m(x∗) becomes identical to that of the full GP. Also, note that for decay-
ing covariance functions,8 if x∗ is far away from the selected training inputs, the
predictive variance collapses to the output noise level, which we have defined as
an inappropriate prior.

The computational cost of predicting without α∗ is an initial O(nm2) to
compute Σ, and then an additional O(m) for the predictive mean and O(m2)
for the predictive variance per test case.

4.3 Making Predictions with α∗

To obtain a better approximation to the full GP, especially in terms of the
predictive variance, we add an extra weight α∗ to the model for each test input
x∗. Unless we are interested in the predictive covariance for a set of test inputs,
it is enough to add one single α∗ at a time. The total number of weights is
therefore only augmented by one for any test case.

For a new test point, the mean and covariance matrix of the new posterior
over the augmented weights vector are given by:

μ∗ = σ−2Σ∗

[
K�

mn

k�
∗

]
y ,

Σ∗ =
[

Σ−1 k(x∗) + σ−2 K�
nmk∗

k(x∗)� + σ−2 k�∗ Knm k∗∗ + σ−2 k�∗ k∗

]−1

.

(28)

and the computational cost of updating the posterior and computing the pre-
dictive mean and variance is O(nm) for each test point. The most expensive
operation is computing K�

nmk∗ with O(nm) operations. Once this is done and
given that we have previously computed Σ, computing Σ∗ can be efficiently
done using inversion by partitioning in O(m2) (see Sect. A.1 for the details).
The predictive mean and variance can be computed by plugging the updated
posterior parameters (28) into (27), or alternatively by building the updated
joint prior over the training and new test function values. We describe in detail
the algebra involved in the second option in App. A.5. The predictive mean and
variance when including α∗ are respectively given by:

m∗(x∗) = k�
∗
[
Knm K−1

mm K�
nm + σ2 I + v∗v�

∗ /c∗
]−1

y ,

v∗(x∗) = σ2 + k∗∗ + k�
∗
[
Knm K−1

mm K�
nm + σ2 I + v∗v�

∗ /c∗
]−1

k∗ .
(29)

where v∗ ≡ k∗ − Knm K−1
mm k(x∗) is the difference between the actual and the

approximated covariance of f∗ and f , and c∗ ≡ k∗∗ − k(x∗)�K−1
mm k(x∗) is the

predictive variance at x∗ of a full GP with the support inputs as training inputs.
8 Covariance functions whose value decays with the distance between the two argu-

ments. One example is the squared exponential covariance function described in
Sect. 2. Decaying covariance functions are very commonly encountered in practice.
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4.4 Selecting the Support Points

One way of addressing the problem of selecting the m support inputs is to select
them from among the n training inputs. The number of possible sets of support
inputs is combinatorial, Cm

n .9 Since we will typically be interested in support
sets much smaller than the training sets (m < n), this implies that the number
of possible support sets is roughly exponential in m. Ideally one would like to
evaluate the evidence for the finite linear model approximation (23), for each
possible support input set, and then select the set that yields a higher evidence.
In most cases however, this is impractical due to computational limitations. One
suboptimal solution is to opt for a greedy method: starting with an empty subset,
one includes the input that results in a maximal increase in evidence. The greedy
method exploits the fact that the evidence can be computed efficiently when a
case is added (or deleted) to the support set.

Suppose that a candidate input xi from the training set is considered for
inclusion in the support set. The new marginal likelihood is given by:

Li =
1
2

log |Q̃i| + 1
2

y�Q̃−1
i y , Q̃i ≡ σ2 I + Knm̃ K−1

m̃m̃ K�
nm̃ , (30)

where m̃ is the set of m + 1 elements containing the m elements in the current
support set plus the new case xi. Q̃i is the updated covariance of the evidence
of the RRGP augmented with xi. Let us deal separately with the two terms in
the evidence. The matrix inversion lemma allows us to rewrite Q̃i as:

Q̃i = σ−2 I − σ−4 Knm̃ Σi K�
nm̃ , Σi =

[
K�

nm̃Knm̃/σ2 + Km̃m̃

]−1
, (31)

where Σi is the covariance of the posterior over the weights augmented in αi,
the weight associated to xi. Notice that Σi is the same expression as Σ∗ in (28)
if one replaces the index ∗ by i. In both cases we augment the posterior in the
same way. Computing Σi from Σ costs therefore only O(nm).

The term of L quadratic in y can be rewritten as:

Qi =
1

2σ2
y�y − 1

2σ4
y�Knm̃ Σi K�

nm̃ y , (32)

and can be computed efficiently in O(nm) if Σ and K�
nm y are known. In

Sect. A.3 we provide the expressions necessary for computing Qi incrementally
in a robust manner from the Cholesky decomposition of Σ. In Sect. 4.5 we
describe Smola and Bartlett’s Sparse Greedy Gaussian Process (SGGP) Regres-
sion which uses Qi solely as objective function for selecting the support set in a
greedy manner.

The term of L that depends on log |Q̃i| can be expressed as:

Gi =
1
2
[
log |Σi| − log |Km̃m̃| + n logσ2

]
, (33)

9 Cm
n is “n choose m”: the number of combinations of m elements out of n without

replacement and where the order does not matter.
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and computed at a cost of O(nm) (the cost of computing K�
nm ki). The algebra in

Sect. A.3 can be used to update the determinants from the incremental Cholesky
decompositions at no additional cost.

The overall cost of evaluating the evidence for each candidate point for the
support set is O(nm). In practice, we may not want to explore the whole training
set in search for the best candidate, since this would be too costly. We may
restrict ourselves to exploring some reduced random subset.

4.5 Sparse Greedy Gaussian Process Regression

Smola and Bartlett (2001) and Schölkopf and Smola (2002) present a method
to speed up the prediction stage for Gaussian processes. They propose a sparse
greedy techniques to approximate the Maximum a Posteriori (MAP) predictions,
treating separately the approximation of the predictive mean and that of the
predictive variance.

For the predictive mean, Smola and Bartlett adopt a finite linear approxima-
tion of the form given by (22), where no extra weight α∗ associated to the test
input is added. Since this is a degenerate GP, it is understandable that they only
use it for approximating the predictive mean: we now know that the predictive
uncertainties of degenerate GPs are inappropriate.

The main contribution of their paper is to propose a method for selecting
the m inputs in the support set from the n training inputs. Starting from a full
posterior distribution (as many weights as training inputs), they aim at finding a
sparse weight vector (with only m non-zero entries) with the requirement that the
posterior probability at the approximate solution be close to the maximum of the
posterior probability (quoted from (Schölkopf and Smola, 2002, Sect. 16.4.3)).
Since the optimal strategy has again a prohibitive cost, they propose a greedy
method where the objective function is the full posterior evaluated at the optimal
weights vector with only m non-zeros weighs, those corresponding to the inputs
in the support set.

The posterior on αn (full posterior) is given by (26), where m = n, i.e.
matrix Knm is replaced by the full n × n matrix K. The objective function
used in (Smola and Bartlett, 2001; Schölkopf and Smola, 2002) is the part of
the negative log posterior that depends on αn, which is the following quadratic
form:

−1
2
y�Knm αm +

1
2

α�
m

[
K�

nm Knm + σ2 Kmm

]
αm , (34)

where as usual αm denotes the part of αn that hasn’t been clamped to zero.
Notice that it is essential for the objective function to be the full posterior
evaluated at a sparse αn, rather than the posterior on αm (given by (26) with
indeed m �= n). In the latter case, only the log determinant of the covariance
would play a rôle in the posterior, since αm would have been made equal to
the posterior mean, and we would have a completely different objective function
from that in (Smola and Bartlett, 2001; Schölkopf and Smola, 2002).
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Given two candidates to the support set, the one resulting in a support set
for which the minimum of (34) is smaller is chosen. The minimum of (34) is
given by:

−1
2
y� Knm

[
K�

nm Knm + σ2 Kmm

]
K�

nm y , (35)

and it is in fact this quantity that is minimized with respect to the m elements
in the support set in a greedy manner. The expression given in (35) with m �= n
is in fact an upper bound to the same expression with m = n, which corresponds
to selecting the whole training set as active set. Smola and Bartlett (2001);
Schölkopf and Smola (2002) also provide a lower bound to the latter, which al-
lows them to give a stop criterion to the greedy method based on the relative
difference between upper and lower bound. The computational cost of evaluating
the expression given in (35) for each candidate to the support set is O(nm), and
use can be made of an incremental Cholesky factorization for numerical stability.
The expressions in Sect. A.3 can be used. The computational cost is therefore
the same for the SGGP method as for the greedy approach based on maximizing
the evidence that we propose in Sect. 4.4.

Why Does It Work? One might at this point make abstraction from the
algorithmic details, and ask oneself the fair question of why obtaining a sparse
weight vector that evaluated under the posterior over the full weight vector yields
a probability close to that of the non-sparse solution is a good approximation.
Along the same lines, one may wonder whether the stopping criterion proposed
relates in any way with good generalization.

It turns out that the method often works well in practice, in a very similar
way as our proposed greedy criterion based on maximizing the evidence. One
explanation for the SGGP method to select meaningful active sets is that it is
in fact minimizing a part of the negative log evidence Li, given by (30). Indeed,
notice that minimizing the objective function given by (35) is exactly equivalent
to minimizing the part of the negative log evidence quadratic in y given by (32).
So why would the method work if it only maximizes Qi (32), the part of Li

that has to do with fitting the data, and ignores Gi (33), the part that enforces
regularization? We believe that overfitting will seldom happen because m is
typically significantly smaller than n, and that therefore we are selecting from a
family of models that are all very simple. In other words, it is the sparsity itself
that guarantees some amount of regularization, and therefore Gi can be often
safely omitted from the negative log evidence. However, as we will see in what
follows, the SGGP can fail and indeed overfit. The problem is that the SGGP
fails to provide a valid stopping criterion for the process of adding elements to
the support set.

But, How Much Sparsity? If sparsity seemingly ensures generalization, then
it would also seem that a criterion is needed to know the minimum sparsity level
required. In other words, we need to know how many inputs it is safe to include
in the support set. (Smola and Bartlett, 2001; Schölkopf and Smola, 2002) use
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a measure they call the “gap”, which is the relative difference between the up-
per and lower bound on the negative log posterior. They choose an arbitrary
threshold below which they consider that the approximate posterior has been
maximized to a value close enough to the maximum of the full posterior. Once
again we fail to see what such a criterion has to do with ensuring generaliza-
tion, and we are not the only ones: Schwaighofer and Tresp (2003) report “we
did not observe any correlation between the gap and the generalization perfor-
mance in our experiments”. It might be that for well chosen hyperparameters
of the covariance, or for datasets that do not lend themselves to sparse approxi-
mations, keeping on adding cases to the support set cannot be harmful. Yet the
SGGP does not allow learning the hyperparameters, and those must be somehow
guessed (at least not in a direct way).

We provide a simple toy example (Fig. 2) in which the value of minimizing
the negative log evidence becomes apparent. We generate 100 one-dimensional
training inputs, equally spaced from −10 to 10. We generate the corresponding
training inputs by applying the function sin(x)/x to the inputs, and adding
Gaussian noise of variance 0.01. We generate the test data from 1000 test inputs
equally spaced between −12 and 12. We use a squared exponential covariance
function as given by (1), and we set the hyperparameters in the following way:
the lengthscale is θ1 = 1, the prior standard deviation of the output signal is
θ2 = 1 and the noise variance is σ2 = θ3 = 0.01. Note that we provide the
model with the actual variance of the noise. We apply the greedy strategy for
selecting the support set by minimizing in one case the negative log evidence
and in the other case the negative log posterior. Interesting things happen. We
plot the test squared error as a function of m, the size of the support set for both
greedy strategies. Both have a minimum for support sets of size around 8 to 10
elements, and increase again as for larger support sets. Additionally, we compute
the negative log evidence as a function of m, and we see that it has a minimum
around the region where the test error is minimal. This means that we can
actually use the evidence to determine good levels of sparsity. We also plot the
“gap” as a function of m, and indicate the location of the arbitrary threshold
of 0.025 used by Smola and Bartlett (2001); Schölkopf and Smola (2002). The
gap cannot provide us with useful information in any case, since it is always a
monotonically decreasing function of m! The threshold is absolutely arbitrary,
and has no relation to the expected generalization of the model.

Approximating Predictive Variances. Obtaining the predictive variance
based on the posterior of the weights associated to the support set is a bad
idea, since those will be smaller the further away the test input is from the
inputs in the support set. An explicit approximation to the predictive vari-
ance of a full GP, given in (6) is proposed instead. For a given test input x∗,
Smola and Bartlett (2001); Schölkopf and Smola (2002) propose to approximate
the term:

−k�
∗
[
K + σ2 I

]−1
k∗ , (36)
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Fig. 2. Comparison between a sparse greedy approximation based on minimiz-
ing the negative log evidence, and one based on minimizing the negative log
posterior. In both figures the horizontal axis indicates the size of the support
set. Top: the solid black curve is the negative log evidence, with values given
by the right vertical axis, the other two curves are the test squared error of the
greedy methods based on minimizing the negative log evidence (solid gray) and
the negative log posterior (dashed black), with values given on the left vertical
axis. Bottom: for the SGGP approach the upper and lower bounds on the neg-
ative lower posterior are given, and the vertical dotted line shows the minimum
size of the support set for which the “gap” is smaller that 0.025.

using the fact that it is the minimum (with respect to the n × 1 weights vector
β, one weight associated to each training input) of the quadratic form:

−2k�
∗ β + β� [K + σ2 I

]
β . (37)

They then go on to propose finding a sparse version βm of β with only m non-
zero elements.10 The method is again a greedy incremental minimization of the

10 This m does not have anything to do with the number of inputs in the support
set of our previous discussion. It corresponds to a new support set, this time for
approximating the predictive variance at x∗. We insist on using the same symbol
though because it still corresponds to a support set with m < n.
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expression in (37). For a given choice of active elements (non-zero) in β, the
minimum of the objective function is given by:

−k(x∗)�
[
Kmm + σ2 I

]−1
k(x∗) , (38)

where here again k(x∗) represents an m×1 vector containing the covariance func-
tion evaluated at x∗ and at the m inputs in the support set. Again, the support
set yielding a minimal value of the expression in (38) will be chosen. The expres-
sion in (38) is also an upper bound on the (36), which means that bad approxima-
tions only mean an overestimate of the predictive variance, which is less bad than
an underestimate. For each candidate to the support set, (38) can be evaluated
in O(m2) (this cost includes updating

[
Kmm + σ2 I

]−1). Luckily, in practice the
typical size of the support sets for approximating predictive variances is around
one order of magnitude smaller than the size of the support set for approximating
predictive means. Smola and Bartlett (2001); Schölkopf and Smola (2002) also
provide a lower bound to (36), which allows to use a similar stop criterion as in
the approximation of the predictive means.

Limitations Though it does work in practice and for the datasets on which we
have tried it, there is no fundamental guarantee that SGGP will always work,
since it does not maximize the whole of the evidence: it ignores the term in
log |Q̃|.

The hyperparameters of the covariance function need to be known: they can-
not be learned by maximizing the posterior, since this would lead to overfitting.

While for approximating the predictive means one needs to find a unique
support set, a specific support set needs to be estimated for each different test
input if one wants to obtain good approximations to the predictive variance. The
computational cost becomes then O(knm2) per training case, where k is the
size of a reduced random search set (Smola and Bartlett (2001) suggest using
k = 59).

5 Experiments

We use the KIN40K dataset (for more details see Rasmussen, 1996, Chap. 5).
This dataset represents the forward dynamics of an 8 link all-revolve robot arm.
The dataset contains 40000 examples, the input space is 8-dimensional, and the
1-dimensional output represents the distance of an end-point of the robot arm
from a fixed point. The mapping to be learned is low noise and highly nonlinear.
This is of importance, since it means that the predictions can be improved by
training on more data, and sparse solutions do not arise trivially.

We divide the dataset into 10 disjoint subsets of 4000 elements, that we
then further split into training and test sets of 2000 elements each. The size
of the support set is set to 512 elements in all cases. For each method we per-
form then 10 experiments, and compute the following losses: the Mean Ab-
solute Error (MAE), the Mean Squared Error (MSE) and the Negative Test
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Log-density (NTL). We also compute the training negative log likelihood per
training case. Averaged results over the 10 disjoint sub-datasets are shown in
the upper part of Table 1. SGGP is the sparse support set selection method
proposed by Smola and Bartlett (2001); to compute predictive uncertainties, we
do not use the sparse greedy approximation they suggest, since it has a too high
computational cost of O(knm2) per test case, with k = 59 and m ≈ 250 in our
case to reach gap < 0.025. As an alternative, they suggest to use the predictive
uncertainties given by a reduced GP trained only on the support set obtained
for approximating the predictive mean; the computational cost is low, O(m2)
per test case, but the performance is too poor to be worth reporting (NTL of the
order of 0.3). To compute predictive uncertainties with the SGGP method we
use the expressions given by (27) and (29). SGEV is our alternative greedy sup-
port set selection method based on maximizing the evidence. The HPEV-rand
method selects a support set at random and learns the covariance hyperparam-
eters by maximizing the evidence of the approximate model, as described in
Sect. 4.1. The HPEV-SGEV and HPEV-SGGP methods select the support set
for fixed hyperparameters according to the SGEV and and SGGP methods re-
spectively, and then for that selected support set learn the hyperparameters by
using HPEV. This procedure is iterated 10 times for both algorithms, which is
enough for the likelihood to apparently converge. For all algorithms we present
the results for the näıve non-augmented degenerate prediction model, and for
the augmented non-degenerate one.

The experimental results show that the performance is systematically supe-
rior when using the augmented non-degenerate RRGP with an additional weight
α∗. This superiority is expressed in all three losses, mean absolute, mean squared
and negative test predictive density (which takes into account the predictive un-
certainties). We believe that the relevant loss is the last one, since it reflects
the fundamental theoretical improvement of the non-degenerate RRGP. The
fact that the losses related to the predictive mean are also better can be ex-
plained by the model being slightly more flexible. We performed paired t-tests
that confirmed that under all losses and algorithms considered, the augmented
RRGP is significantly superior than the non-augmented one, with p-values al-
ways smaller than 1%. We found that for the dataset considered SGGP, SGEV
and HPEV-rand are not significantly different. It would then seem that learn-
ing the hyperparameters for a random support set, or learning the support set
for (carefully selected) hyperparameters by maximizing the posterior or the ev-
idence are methods with equivalent performance. We found that both for the
augmented and the non-augmented case, HPEV-SGEV and HPEV-SGGP are
significantly superior to the other three methods, under all losses, again with
p-values below 1%. On the other hand, HPEV-SGEV and HPEV-SGGP are not
significantly different from each other under any of the losses.

The lower part of Table 1 shows the results of an additional experiment
we made, where we compare SGEV to HPEV-rand on a larger training set.
We generate this time 10 disjoint test sets of 4000 cases, and 10 corresponding
training sets of 36000 elements. The size of the support sets remains 512. We
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non-augmented augmented
method tr. neg log lik MAE MSE NTL MAE MSE NTL

SGGP – 0.0481 0.0048 −0.3525 0.0460 0.0045 −0.4613
SGEV −1.1555 0.0484 0.0049 −0.3446 0.0463 0.0045 −0.4562
HPEV-rand −1.0978 0.0503 0.0047 −0.3694 0.0486 0.0045 −0.4269
HPEV-SGEV −1.3234 0.0425 0.0036 −0.4218 0.0404 0.0033 −0.5918
HPEV-SGGP −1.3274 0.0425 0.0036 −0.4217 0.0405 0.0033 −0.5920

2000 training - 2000 test

SGEV −1.4932 0.0371 0.0028 −0.6223 0.0346 0.0024 −0.6672
HPEV-rand −1.5378 0.0363 0.0026 −0.6417 0.0340 0.0023 −0.7004

36000 training - 4000 test

Table 1. Comparison of different learning methods for RRGPs on the KIN40K
dataset, for 2000 training and test cases (upper subtable) and for 36000 train-
ing and 4000 test cases (lower subtable). The support set size is set to 512
for all methods. For each method the training negative log marginal likeli-
hood per case is given, together with the Mean Absolute Error (MAE), Mean
Squared Error (MSE) and Negative Test Log-likelihood (NTL) losses. SGGP
(Smola and Bartlett, 2001) and SGEV (our alternative to SGGP based on max-
imizing the evidence) are based on learning the support set for fixed hyperpa-
rameters. HPEV-random learns the hyperparameters for a random subset, and
HPEV-SGEV and HPEV-SGGP are methods where SGEV and SGGP are re-
spectively interleaved with HPEV, for 10 repetitions.

compute the same losses as earlier, and consider also the augmented and the
non-augmented RRGPs for making predictions. Paired t-tests11 confirm once
again the superiority of the augmented model to the non-augmented one for
both models and all losses, with p-values below 1%.

6 Discussion

We have proposed to augment RRGPs at test time, by adding an additional
weight α∗ associated to the new test input x∗. The computational cost for the
predictive mean increases to O(nm) per case, i.e. O(n) more expensive than the
non-augmented case. It might seem surprising that this is more expensive than
the O(n) cost per case of the full GP! Of course, the full GP has has an initial
cost of O(n2) provided that the covariance matrix has been inverted, which costs
O(n3). Computing predictive variances has an initial cost of O(nm2) like for the
non-augmented case, and then a cost per case of O(nm) which is more expensive
than the O(m2) for the non-augmented case, and below the O(n2) of the full
GP. It may be argued that the major improvement brought by augmenting
the RRGP is in terms of the predictive variance, and that one might therefore
11 Due to dependencies between the training sets, assumptions of independence needed

for the t-test could be compromised, but this is probably not a major effect.
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consider computing the predictive mean from the non-augmented model, and
the predictive variance from the augmented. However, the experiments we have
conducted show that the augmented RRGP is systematically superior to the non-
augmented, for all losses and learning schemes considered. The mean predictions
are also better, probably due to the gain in flexibility by having an additional
basis function.

Which method should be used for computing predictive variances? We have
shown that using the degenerate RRGP, (27), has a computational cost of O(m2)
per test case. Using the augmented non-degenerate RRGP is preferable though
because it gives higher quality predictive uncertainties, but the cost augments
to O(nm) per test case. Smola and Bartlett (2001) propose two possibilities. A
cost efficient option, O(m2) per test case, is to base the calculation of all test
predictive variances on the support set selected by approximating the posterior,
which is in fact equivalent to computing predictive variances from a small full
GP trained only on the support set. They show that the predictive variances
obtained will always be an upper bound on the ones given by the full GP, and
argue that inaccuracy (over estimation) is for that reason benign. We found
experimentally that the errorbars from a small full GP trained only on the
support set are very poor. The more accurate, yet more costly option consists
is selecting a new support set for each test point. While they argue that the
typical size of such test sets is very small (of the order of 25 for reasonable
hyperparameters for the abalone dataset, but of the order of 250 for the KIN40K
dataset), the computational cost per test case rises to O(knm2). As we have
explained, k is the size of a reduced random search set that can be fixed to 59 (see
Smola and Bartlett, 2001). For their method to be computationally cheaper than
our augmented RRGP, the support set that our method selects should contain
more than 59 × 252 = 36875 elements. This is two orders of magnitude above
the reasonable size of support sets that we would choose. In the experiments, we
ended up computing the predictive variances for the SGGP from our expressions
(27) and (29).

We found that none of the two possible “one-shot” approaches to training a
RRGP is significantly superior to the other. In other words, selecting support
sets at random and optimizing the hyperparameters does not provide signifi-
cantly different performance than fixing the hyperparameters and selecting the
support set in a supervised manner. Furthermore, on the dataset we did our
experiments SGGP and SGEV did not prove to be significantly different either.
We expect SGEV to perform better than SGGP on datasets where for the given
hyperparameters the learning curve saturates, or even deteriorates as the sup-
port set is increased, as is the case in the example we give in Fig. 2. Interleaving
support set selection and hyperparameter learning schemes proves on the other
hand to be promising. The experiments on KIN40K show that this scheme gives
much superior performance to the two isolated learning schemes.

It is interesting to note the relation between the RRGP and the Nyström
approximation proposed by Williams and Seeger (2001). In that approach the
predictive mean and variance are respectively given by:
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m(x∗) = k�
∗
[
Knm K−1

mm K�
nm + σ2 I

]−1
y ,

v(x∗) = σ2 + k∗∗ + k�
∗
[
Knm K−1

mm K�
nm + σ2 I

]−1
k∗ .

(39)

These expressions are very similar to those obtained for the augmented RRGP,
given by (29). However, the additional term in the approximate covariance for the
augmented RRGP ensures that it is positive definite, see (Williams et al., 2002),
and that therefore our approach does not suffer from negative predictive vari-
ances as is the case for the Nyström approximation for GPs.

Future work will involve the theoretical study of other sparse approximations
to GPs that have been recently proposed, which we enumerate in Sect. 1, and
the experimental comparison of these methods to those presented in this paper.

A Useful Algebra

A.1 Matrix Identities

The matrix inversion lemma, also known as the Woodbury, Sherman & Morrison
formula states that:

(Z + UWV �)−1 = Z−1 − Z−1U(W−1 + V �Z−1U)−1V �Z−1, (A-40)

assuming the relevant inverses all exist. Here Z is n×n, W is m×m and U and V
are both of size n×m; consequently if Z−1 is known, and a low rank (ie. m < n)
perturbation are made to Z as in left hand side of eq. (A-40), considerable
speedup can be achieved. A similar equation exists for determinants:

|Z + UWV �| = |Z| |W | |W−1 + V �Z−1U | . (A-41)

Let the symmetric n × n matrix A and its inverse A−1 be partitioned into:

A =
(

P Q
QT S

)
, A−1 =

(
P̃ Q̃

Q̃T S̃

)
, (A-42)

where P and P̃ are n1 × n1 matrices and S and S̃ are n2 × n2 matrices with
n = n1 + n2. The submatrices in A−1 are given in Press et al. (1992, p. 77):

P̃ = P−1 + P−1QM−1QT P−1,

Q̃ = −P−1QM−1, where M = S − QT P−1Q

S̃ = M−1 .

(A-43)

There are also equivalent formulae

P̃ = N−1,

Q̃ = −N−1QS−1, where N = P − QS−1QT

S̃ = S−1 + S−1QT N−1QS−1 .

(A-44)



122 Joaquin Quiñonero-Candela and Carl Edward Rasmussen

A.2 Product of Gaussians

When using linear models with Gaussian priors, the likelihood and the prior are
both Gaussian. Their product is proportional to the posterior (also Gaussian),
and their integral is equal to the marginal likelihood (or evidence). Consider the
random vector x of size n × 1 and the following product:

N (x|a, A)N (P x|b, B) = zc N (x|c, C) , (A-45)

where N (x|a, A) denotes the probability of x under a Gaussian distribution
centered on a (of size n × 1) and with covariance matrix A (of size n × n). P
is a matrix of size n × m and vectors b and c are of size m × 1, and matrices
B and C of size m×m. The product of two Gaussians is proportional to a new
Gaussian with covariance and mean given by:

C =
(
A−1 + P B−1P�)−1

, c = C
(
A−1a + P B b

)
.

The normalizing constant zc is gaussian in the means a and b of the two Gaus-
sians that form the product on the right side of (A-45):

zc = (2 π)−
m
2 |B + P�A−1P |

× exp
(
−1

2
(b − P a)�

(
B + P�A−1P

)−1
(b − P a)

)
.

A.3 Incremental Cholesky Factorization for SGQM

Consider the quadratic form:

Q(α) = −v�α +
1
2

α�Aα , (A-46)

where A is a symmetric positive definite matrix of size n×n and v is a vector of
size n × 1. Suppose we have already obtained the minimum and the minimizer
of Q(α), given by:

Qopt = −1
2

v�A−1 v , αopt = A−1 v . (A-47)

We now want to minimize an augmented quadratic form Qi(α), where α is
now of size n × 1 and A and v are replaced by Ai and vi of size n + 1 × n + 1
and n + 1 × 1 respectively, given by:

Ai =
[
A bi

b�
i ci

]
, vi =

[
v
vi

]
.

Assume that vector bi of size n× 1 and scalars ci and vi are somehow obtained.
We want to exploit the incremental nature of Ai and vi to reduce the number
of operations necessary to minimize Qi(α). One option would be to compute
A−1

i using inversion by partitioning, with cost O ((n + 1)2
)

if A−1 is known.
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For iterated incremental computations, using the Cholesky decomposition of Ai

is numerically more stable. Knowing L, the Cholesky decomposition of A, the
Cholesky decomposition Li of Ai can be computed as:

Li =
[
L 0
z�i di

]
, L zi = bi, d2

i = ci − z�i zi . (A-48)

The computational cost is O(n2/2), corresponding to the computation of zi by
back-substitution. Qmin

i can be computed as:

Qmin
i = Qmin − 1

2
u2

i , ui =
1
di

(vi − z�i u) , Lu = v , (A-49)

and the minimizer αopt is given by:

L� αopt = ui , ui =
[
u
ui

]
. (A-50)

Notice that knowing u from the previous iteration, computing Qmin
i has a cost

of O(n). This is interesting if many different i’s need to be explored, for which
only the minimum of Qi is of interest, and not the minimizer. Once the optimal
i has been found, computing the minimizer αopt requires a back-substitution,
with a cost of O(n2/2).

It is interesting to notice that as a result of computing Li one obtains “for
free” the determinant of Ai (an additional cost of O(m) to th eO(nm) cost of the
incremental Cholesky). In Sect. A.4 we give a general expression of incremental
determinants.

A.4 Incremental Determinant

Consider a square matrix Ai that has a row and a column more than square
matrix A of size n × n:

Ai =
[

A bi

c�i di

]
. (A-51)

The determinant of Ai is given by

|Ai| = |A| · (di − b�
i A−1ci) . (A-52)

In the interesting situation where A−1 is known, the new determinant is com-
puted at a cost of O(m2).

A.5 Derivation of (29)

We give here details of the needed algebra for computing the predictive distri-
bution of the Reduced Rank Gaussian Process. Recall that at training time we
use a finite linear model approximation, with less weights than training inputs.
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Each weight has an associated support input possibly selected from the training
inputs. The linear model and prior on the weights are:[

f
f∗

]
= Φnm ·

[
α
α∗

]
, p

([
α
α∗

]∣∣∣∣x∗, X, θ

)
∼ N (0, A−1

)
.

where we have defined

Φnm =
[

Knm k∗
k(x∗)� k∗∗

]
, A =

[
Kmm k(x∗)

k(x∗)� k∗∗

]
. (A-53)

The induced prior over functions is Gaussian with mean zero and covariance
matrix C:

p

([
f
f∗

]∣∣∣∣x∗, X, θ

)
∼ N (0, C) , C = Φnm A−1 Φ�

nm . (A-54)

We use inversion by partitioning to compute A−1:

A−1 =
[
K−1

mm + K−1
mmk(x∗)k(x∗)�K−1

mm −K−1
mmk(x∗)/c∗

−k(x∗)�K−1
mm/c∗ 1/c∗

]
,

c∗ = k∗∗ − k(x∗)�K−1
mmk(x∗) ,

which allows to obtain C:

C =
[
Cnn k∗
k�
∗ k∗∗

]
, Cnn ≡ Knm K−1

mm K�
nm + v∗v�

∗ /c∗ , (A-55)

where v∗ ≡ k∗ − Knm K−1
mm k(x∗). We can now compute the distribution of f∗

conditioned f :

p(f∗|f , x∗, X, θ) ∼ N (k�
∗ C−1

nn f , k∗∗ − k�
∗ C−1

nn k∗
)

. (A-56)

The predictive distribution, obtained as in (5), is Gaussian with mean and vari-
ance given by (29). We repeat their expressions here for convenience:

m∗(x∗) = k�
∗
[
Knm K−1

mm K�
nm + σ2 I + v∗v�

∗ /c∗
]−1

y ,

v∗(x∗) = σ2 + k∗∗ + k�
∗
[
Knm K−1

mm K�
nm + σ2 I + v∗v�

∗ /c∗
]−1

k∗ .

B Matlab Code for the RRGP

We believe that one very exciting part of looking at a new algorithm is “trying it
out”! We would like the interested reader to be able to train our Reduced Rank
Gaussian Process (RRGP) algorithm. Training consists in finding the value of
the hyperparameters that minimizes the negative log evidence of the RRGP (we
give it in Sect. 4.1). To do this we first need to be able to compute the negative
log evidence and its derivatives with respect to the hyperparameters. Then we
can plug this to a gradient descent algorithm to perform the actual learning.



Analysis of Some Methods for Reduced Rank Gaussian Process Regression 125

We give a Matlab function, rrgp nle, that computes the negative log evi-
dence of the RRGP and its derivatives for the squared exponential covariance
function (given in (1)). The hyperparameters of the squared exponential covari-
ance function are all positive. To be able to use unconstrained optimization, we
optimize with respect to the logarithm of the hyperparameters.

An auxiliary Matlab function sq dist is needed to compute squared dis-
tances. Given to input matrices of sizes d × n and d × m, the function returns
the n × m matrix of squared distances between all pairs of columns from the
inputs matrices. The authors would be happy to provide their own Matlab MEX
implementation of this function upon request.

Inputs to the Function rrgp nle:

– X: D + 2× 1 vector of log hyperparameters, X = [log θ1, . . . log θD+1, log σ]�,
see (1)

– input: n × D matrix of training inputs
– target: n × 1 matrix of training targets
– m: scalar, size of the support set

Outputs of the Function rrgp nle:

– f: scalar, evaluation of the negative log evidence at X
– f: D + 2× 1 vector of derivatives of the negative log evidence evaluated at X

Matlab Code of the Function rrgp nle:

function [f,df] = rrgp_nle(X,input,target,m)

% number of examples and dimension of input space
[n, D] = size(input);
input = input ./ repmat(exp(X(1:D))’,n,1);

% write the noise-free covariance of size n x m
Knm = exp(2*X(D+1))*exp(-0.5*sq_dist(input’,input(1:m,:)’));
% add little jitter to Kmm part
Knm(1:m,:) = Knm(1:m,:)+1e-8*eye(m);

Cnm = Knm/Knm(1:m,:);
Smm = Knm’*Cnm + exp(2*X(D+2))*eye(m);
Pnm = Cnm/Smm;
wm = Pnm’*target;

% compute function evaluation
invQt = (target-Pnm*(Knm’*target))/exp(2*X(D+2));
logdetQ = (n-m)*2*X(D+2) + sum(log(abs(diag(lu(Smm)))));
f = 0.5*logdetQ + 0.5*target’*invQt + 0.5*n*log(2*pi);
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% compute derivatives
df = zeros(D+2,1);

for d=1:D
Vnm = -sq_dist(input(:,d)’,input(1:m,d)’).*Knm;
df(d) = (invQt’*Vnm)*wm - 0.5*wm’*Vnm(1:m,:)*wm+...

-sum(sum(Vnm.*Pnm))+0.5*sum(sum((Cnm*Vnm(1:m,:)).*Pnm));
end
aux = sum(sum(Pnm.*Knm));
df(D+1) = -(invQt’*Knm)*wm+aux;
df(D+2) = (n-aux) - exp(2*X(D+2))*invQt’*invQt;
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Abstract. Kernel-based non-parametric models have been applied widely
over recent years. However, the associated computational complexity im-
poses limitations on the applicability of those methods to problems with
large data-sets. In this paper we develop a filtering approach based on
a Gaussian process regression model. The idea is to generate a small-
dimensional set of filtered data that keeps a high proportion of the in-
formation contained in the original large data-set. Model learning and
prediction are based on the filtered data, thereby decreasing the compu-
tational burden dramatically.
Keywords: Filtering transformation, Gaussian process regression model,
Karhunen-Loeve expansion, Kernel-based non-parametric models, Prin-
cipal component analysis.

1 Introduction

Kernel-based non-parametric models such as Splines (Wahba, 1990), Support
Vector Machines (Vapnik, 1995) and Gaussian process regression models (see
for example O’Hagan (1978), and Williams and Rasmussen, (1996)) have be-
come very popular in recent years. A major limiting factor with such methods
is the computational effort associated with dealing with large training data-sets,
as the complexity grows at rate O(N3), where N is the number of observations
in the training set. A number of methods have been developed to overcome this
problem. So far as the Gaussian process (GP) regression model is concerned,
such methods include the use of mixtures of GPs (Shi, Murray-Smith and Tit-
terington, 2002) for a large data-set with repeated measurements, and the use
of approximation methods such as the Subset of Regressors method (Poggio and
Girosi, 1990; Luo and Wahba, 1997), the iterative Lanczos method (Gibbs and
Mackay, 1997), the Bayesian Committee Machine (Tresp, 2000), the Nyström
Method (Williams and Seeger, 2001) and Selection Mechanisms (Seeger et al.,
2003).
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Gaussian process prior systems generally consist of noisy measurements of
samples of the putatively Gaussian process of interest, where the samples serve to
constrain the posterior estimate. In Murray-Smith and Pearlmutter (2003), the
case was considered where the measurements are instead noisy weighted sums of
samples. Adapting the idea of the transformation of GPs described in Murray-
Smith and Pearlmutter (2003), we describe here a specific filtering approach to
deal with the modelling of large data-sets. The approach involves two stages. In
the first stage, a set of filtered data of dimension n is generated, where usually
n � N , the dimension of the original training data-set. The value of n can be
selected such that the filtered data can represent a proportion of the information
of the original whole data-set. This therefore amounts to a question of experiment
design, involving specification of how to design physical filters to generate filtered
data. In the second stage, we carry out model learning and prediction based on
the filtered data. The approach is also extended to online learning where data
arrive sequentially and training must be performed sequentially as well.

The paper is organized as follows. Section 2 discusses the details of the fil-
tering approach. We first discuss an orthogonal expansion of a kernel covariance
function of a GP model based on its eigenfunctions and eigenvalues in Sec-
tion 2.1. Using the results, we develop a filtering approach, the details of which
are given in Section 2.2. Section 2.3 discusses statistical inference based on the
filtered data, including model learning and prediction. Section 2.4 extends the
approach to online learning. A simulation study is given in Section 3 to illustrate
the performance of the method, and some discussion is given in Section 4.

2 Filtering Approach for Large Data-Sets

2.1 Expansion of a Gaussian Process and Its Transformations

Consider a Gaussian process y(x), which has a normal distribution with zero
mean and kernel covariance function k(x, u), where x is a vector of input vari-
ables. The related observation is t(x) = y(x) + ε(x), where ε(x) ∼ N(0, σ2) and
ε(x)’s for different x’s are assumed independent. The Gaussian process y(x) can
be decomposed, according to the Karhunen-Loève orthogonal expansion, as

y(x) =
∞∑

i=1

φi(x)ξi, (1)

and the covariance kernel function k(x, u) can be expanded as

k(x, u) =
∞∑

i=1

λiφi(x)φi(u), (2)

where λ1 ≥ λ2 ≥ · · · ≥ 0 denote the eigenvalues and φ1, φ2, · · · are the related
eigenfunctions of the operator whose kernel is k(x, u), so that∫

k(u, x)φi(x)p(x)dx = λiφi(u), (3)



130 Jian Qing Shi et al.

where p(x) is the density function of the input vector x. The eigenfunctions are
p-orthogonal, i.e. ∫

φi(x)φj(x)p(x)dx = δij .

In (1) ξi is given by

ξi =
∫

φi(x)y(x)p(x)dx. (4)

Given a random sample {xi, i = 1, · · · , N} of inputs, independent and iden-
tically distributed according to p(x), we have the discrete form of y(x); that
is, Y ′ = (y(x1), · · · , y(xN )). From (2), the covariance kernel k(x, u; θ) can be
expanded into a feature space of dimension N as

k(x, u; θ) =
N∑

i=1

λiφi(x)φi(u), (5)

where θ is a vector of unknown parameters of interest. Typically N is very large,
so that the above expansion is a good approximation to (2). The discrete form
of (4) is

ξi ≈ 1
N

N∑
j=1

φi(xj)y(xj). (6)

Let Σ(N) be the covariance matrix of Y , λ
(N)
i be an eigenvalue of Σ(N) and

φ
(N)
i be the related N -dimensional eigenvector, where λ

(N)
1 ≥ λ

(N)
2 ≥ · · · ≥ 0.

Then (φi(x1), · · · , φi(xN )) ≈ √
Nφ

(N)
i and λi ≈ λ

(N)
i /N for i = 1, · · · , N ; for

details see Williams and Seeger (2001).
We will now assume that instead of observing the Y ’s directly, we observe a

transformation z of the latent vector Y , given by

zk =
N∑

j=1

Kkjy(xj) = KkY (7)

for k = 1, · · · , n. In other words, for the vector of latent variables Y we observe
outputs Z = KY , where K is an n × N known matrix and ZT = (z1, · · · , zn).
The above transformations define n data filters, and usually n � N . Each of n
physical filters can be designed by the values of each row of K.

A special case corresponds to constructing K from the first n eigenvectors of
Σ(N). When the kth row of K consists of the eigenvector φ

(N)
k , zk is calculated

by (7). Comparing (7) with (6), we have that ξk ≈ zk/
√

N . The n filtered
observations z correspond to the n largest eigenvalues. Therefore, if we use the
n-dimensional filtered data, we approximate the covariance kernel in (5) by

k(x, u) ≈
n∑

i=1

λiφi(x)φi(u). (8)
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Then the subspace spanned by the n-dimensional transformed data contains the
‘best’ n-dimensional view of the original N -dimensional data. If the remaining
eigenvalues are very small in comparison, (8) should be a good approximation
to (5). This idea is used to develop a filtering approach, the details of which are
given in the next subsection.

2.2 Filtering Approach

If we have N observations, the related N ×N covariance matrix is calculated by
the covariance kernel function Σ(N) = (k(xi, xj; θ)). Following the discussion in
the above section, K is constructed from the n eigenvectors of Σ(N)(θ) which
are associated with the first n largest eigenvalues. Since θ is unknown, we need
to use an estimate θ̂ based on those N observations. A standard method (see for
example Williams and Rasmussen, 1996, and Shi, Murray-Smith and Tittering-
ton, 2002) can be used to calculate θ̂. Then Σ(N) is approximated by Σ(N)(θ̂).
The related eigenvalues and eigenvectors are calculated from Σ(N) and are used
to construct filtered data. Since the complexity of obtaining the estimate θ̂ and
calculating eigenvalues is O(N3), it is very time consuming for large N . Fortu-
nately, the Nyström method (Williams and Seeger, 2001) can be used to calculate
the n largest eigenvalues and the associated eigenvectors approximately. It is a
very efficient approach, especially when n � N .

The procedure for generating a filtered data-set is as follows.

Step 1. Select a subset of training data of size m at random from the N ob-
servations. This m may be much less than N . We use a standard method

to calculate an estimate θ̂
(m)

using those m observations. The covariance
matrix of those m observations is estimated by the covariance kernel func-

tion Σ(m) =
(
k(xi, xj ; θ̂

(m)
)
)
, which is an m×m matrix. We calculate its

eigenvalues λ1 ≥ · · · ≥ λm ≥ 0 and the related eigenvectors v1, · · · , vm.
Step 2. By the Nyström method, the first m largest eigenvalues of Σ(N) can be

approximated by
N

m
λi,

for i = 1, · · · , m, and their associated eigenvectors are√
m

N

1
λi

ΣN,mvi, (9)

where ΣN,m is the appropriate N × m submatrix of Σ(N).
Step 3. We select the first n (≤ m) eigenvectors in order to construct the trans-

formation matrix K in (7), and thereby generate an n-dimensional filtered
data-set.

In the above procedure, we need to select m and n. We first discuss how to
select n. The basic idea of the filtering approach is to use (8) to approximate (5).
In the extreme case where λi = 0 for all i > n, the filtered data are equivalent
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to the original data, in terms of the covariance kernel. This typically does not
happen in practice. However, if the values of λi for all i > n are very small
compared to the first n eigenvalues, (8) is a good approximation of (5). Though
it is difficult to compare (8) and (5) directly, we can compare the values of
eigenvalues and choose n such that the remaining eigenvalues are very small in
comparison to the largest eigenvalue. Alternatively, we might select n such that∑n

i=1 λi∑m
i=1 λi

≥ c,

where c is a constant, such as c = 0.99. More discussion will be given in Section
3 in the context of the simulation study.

The other problem is how to select m. In Step 1, we select m observations
and use them to learn the eigen-structure of the covariance kernel k(x, u). It is
obvious that a larger value of m should lead to a more accurate approximation of
eigenvalues and eigenvectors. However, we usually just need to learn the eigen-
structure once. It can then be used repeatedly in similar systems. It will not
increase the computational burden very much if we select a relatively large value
of m. On the other hand, since the eigenvectors are used to generate a ‘best’
n-dimensional view of the original data, the accuracy of the ‘design’ in the first
stage will not have much influence on carried out in the second stage. Some
numerical results will be presented in the next section.

2.3 Model Learning and Prediction Using Filtered Data

The procedure proposed in the last subsection is used to generate a filtered
data-set. Here we discuss how to carry out inference based on the filtered data.

The filtered data are defined via a linear transformation Z = KY , which
can be used to design a set of filters. The observed filtered data may be obtained
through those filters, so for generality we can consider observed errors. The
observed filtered data are assumed to be

sk = zk + ei, for i = 1, · · · , n,

where Z = (zk) = KY and the ei are independent and identically distributed
as N(0, σ2

s) which is the random error when the filtered data are observed. In
matrix form, the filtered data S = (s1, · · · , sn)T are distributed as

S ∼ N(0, Σs),

where Σs = KΣKT + σ2
sIn, and K is a known matrix which is designed in

the first stage. We still use θ to denote the unknown parameters involved in Σs,
which includes σ2

s and the unknown parameters in kernel covariance function.
Then the log-likelihood of θ is

L(θ) = −1
2

log |Σs| − 1
2
ST Σ−1

s S − n

2
log(2π).

Maximizing L(θ) leads to a maximum likelihood estimate of θ.
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Suppose that we wish to predict z∗ = K∗T Y ∗, where Y ∗ = Y (X∗) is q-
dimensional, and X∗ represents q test data points of input. K∗ is a known
q-dimensional vector, which can be thought of as a filter. Given the filtered data
S, the conditional mean and variance of z∗ are

μ̂∗ = K∗T ΣX∗XKT Σ−1
s S

σ̂∗2 = K∗T ΣX∗X∗K∗ − K∗T ΣX∗XKT Σ−1
s KΣXX∗K∗,

where ΣX∗X =
(
k(x∗

i , xj; θ̂)
)

is the q × N covariance matrix between X∗ and

X evaluated at θ̂ which is an estimate using S, and so are the other similar
notations.

If we want to make a single prediction at a new y∗ = y(x∗), we just need to
take q = 1 and K∗ = 1. Bayesian inference can also be used. The implementation
is similar to the methods discussed in Rasmussen (1996) and Shi, Murray-Smith
and Titterington (2002).

2.4 Online Filtering Approach

We assume that data arrive sequentially. Let Da = (Y a, Xa) denote the data
collected between time t(a) and t(a − 1). We can apply the filtering approach
online and adapt the predictive distribution for test data point. For each subset
of data Da, we have a set of filtered data sets,

Sa = Za + ea, Za = KaY a

for a = 1, 2, · · · , A, where A is the number of data sets up to time t(A). The
transformation matrix Ka can be constructed by Step 2 of the filtering approach
discussed in Subsection 2.2. We assume that the eigenstructure of the covariance
kernel for the new data is similar to the previous data, so we just need to learn
the eigenstructure once. It can be used repeatedly for new data sets, so the
computation to generate a new filtered data-set is therefore very efficient. An
estimate of θ based on filtered data Sa is obtained by the method discussed in
the last subsection, and is denoted by θ̂a. If we are interested in prediction at a
new y∗ = y(x∗), the predictive mean and variance based on the filtered data are

μ̂∗
a = Σ∗

aKT
a Σ−1

s,aSa (10)

σ̂∗2
a = k(x∗, x∗; θ̂a) − Σ∗

aKT
a Σ−1

s,aKaΣ∗T
a (11)

where Σ∗
a =

(
k(x∗, xj,a; θ̂a)

)
, and all the other quantities are defined in the

last subsection but evaluated at θ̂a.
Therefore, we have

μ̂∗
a ∼ N(μ∗, σ̂∗2

a )

for a = 1, · · · , A. Here, μ̂∗
a’s are correlated with each other with covariance

σ̂∗
ab = cov(μ̂∗

a, μ̂∗
b)

= Σ∗
aKT

a Σ−1
s,a(KaΣab

s KT
b )Σ−1

s,bKaΣ∗T
b , (12)
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where Σab
s are the covariance matrix between Y a and Y b. The correlation is

calculated by ρ∗ab = σ̂∗
ab/σ̂∗

aσ̂∗
b . The overall mean of prediction based on A data-

sets can be calculated by

μ∗ = 1T Ω−1μ̂∗/(1T Ω−11)

and the variance is
σ2
∗ = (1T Ω−11)−1,

where Ω is the covariance matrix of μ̂∗ = (μ̂∗
1, · · · , μ̂∗

A)T , with the diagonal
element σ̂∗2

a and off-diagonal element σ̂∗
ab, and 1 = (1, · · · , 1)T .

If the correlation ρ∗ab is not very large, we may approximate the predictive
mean by

μ∗ =
∑

a μ̂∗
a/σ̂∗2

a∑
a 1/σ̂∗2

a

,

and the variance is

σ2
∗ =

∑
a 1/σ̂∗2

a + 2
∑

a
=b ρ∗ab/(σ̂∗
aσ̂∗

b )
(
∑

a 1/σ̂∗2
a )2

.

This approximate method can be replaced by an iterative method. Each time we
have a new data-set, we calculate the predictive mean (10), variance (11) and
the covariance (12). Then, we can define the following iterative method:

u(a) = u(a−1) + μ̂∗
a/σ̂∗2

a ,

v(a) = v(a−1) + 1/σ̂∗2
a ,

w(a) = w(a−1) + 2
a−1∑
j=1

ρ∗aj/(σ̂∗
aσ̂∗

j ),

μ̂∗(a) = u(a)/v(a),

σ̂∗(a)2 = (v(a) + w(a))/(v(a))2.

We can therefore maintain a much smaller set of training data, and can subse-
quently update the predictions online, as new data becomes available.

3 Applications

3.1 Learning with Large Data-Sets

As we have discussed in Section 1, a major limiting factor in the use of Gaussian
process models is the heavy computational burden associated with large training
data-sets, as the complexity grows at rate O(N3). Some methods have been
proposed for overcoming this. Murray-Smith and Pearlmutter (2003) argued that
the complexity is O(n3) + O(N2n) for the model learning and prediction based
on the filtered data, which corresponding to the second stage in this paper. In
our first stage, the complexity associated with generating filtered data is O(m3),
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and therefore the overall complexity is O(m3) + O(n3) + O(N2n). Since n ≤ m
and usually m � N , the complexity is generally dominated by O(N2n), and thus
the filtering approach results in substantially decreased computational burden.

An example is used here to illustrate the filtering approach discussed in
this paper. The original 500 training data (dots) and the m = 50 randomly
selected data points (circles) are presented in Figure 1(a). The true model used
to generate the data is yi = sin((0.5xi)3) + εi, where the εi’s are independent
and identical distributed as N(0, 0.012) and xi ∈ (−5, 5). The 50 selected data
points are used to calculate the eigenvalues, and the related eigenfunctions and
eigenvectors using the method described in Step 1 in Section 2.2. We take the
values of c as 0.99, 0.999 and 0.9999, obtaining the values of n as 27, 33 and 39
respectively. The predictions and 95% confidence intervals for a test data set are
presented in Figures 1(d) to 1(f).

There are several interesting findings from these figures. Figure 1(e) gives
the best results in terms of the value of root of mean squared error between
the true test values and the predictions. Though it involves just n = 33 filtered
data, the results are better than the results in Figure 1(b), obtained from 50
randomly selected data points. Figure 1(f) gives the results obtained from n = 39
filtered data points. The performance is slightly worse than Figure 1(e), based
on only 33 filtered data points, though the difference is very small. This in fact
coincides with the theory we discussed in Section 2.1. The filtering approach
always chooses the largest eigenvalues and the related transformed data. It will
not add much information to add more filtered data associated with relatively
small eigenvalues. Comparing Figures 1(e) and 1(f), six more filtered data points
are added. The associated eigenvalues are range from λ34 = 0.0056 to λ39 =
0.0009 and, relative to the largest eigenvalue λ1 = 2.5365, the valuess ranged
from 0.0022 to 0.0003, which are extremely small. In contrast, the numerical
error may increase because the covariance matrix deteriorates due to those small
eigenvalues. Thus it is not surprising that the performance of 1(f) is slightly
worse than Figure 1(e). It shows that only a certain small number of filtered
data points are needed to provide a good representation of the whole data set
of N observations.

Figure 1(d) gives the results based on only n = 27 filtered data points. If we
just use a randomly selected subset of 27 data points, the results are presented
in Figure 1(c). The former is obviously much better than the latter. The other
problem of using subset of data points is the sensitivity of the method to the
choice of the data points. Our simulation study shows that the performance may
be improved if those 27 data points are advantageously distributed over the whole
range. For this, the training set must be located in all parts of the range, and
there must be enough training data in regions where the mean response changes
rapidly, such as near the two ends of the range in this example. Obviously, it is
not easy to guarantee this. The performance will be poor when the data points
are concentrated in certain areas. However, the filtering approach is quite robust.

In our Step 1, an m-dimensional subset is selected for the calculation of the
eigenvalues and eigenvectors. The accuracy depends on the value of m. For more
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(d) with n = 27 filtered data,
rmse=.2063
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(e) with n = 33 filtered data,
rmse=.0945
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(f) with n = 39 filtered data,
rmse=.1019

Fig. 1. Simulation study with m = 50: plot of true curve (solid line), prediction
(dotted line) and 95% confidence intervals.



Filtered Gaussian Processes for Learning with Large Data-Sets 137

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

(a) with 100 random selected
points; rmse=.0695

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

(b) with n = 30 filtered data,
rmse=.1139
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(c) with n = 39 filtered data
rmse=.0611
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(d) with n = 46 filtered data,
rmse=.0293
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(e) with n = 56 filtered data,
rmse=.0291

Fig. 2. Simulation study with m = 100: plot of true curve (solid line), prediction
(dotted line) and 95% confidence intervals.
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accurate results, we should obviously select a relatively larger value of m. Figure
2 presents results when we take m = 100. We get quite similar results to those in
Figure 1. For example, the value of rmse for n = 30 with m = 100 is between the
values of rmse for n = 27 and n = 33 with m = 50 in Figure 1. When we added
more filtered data, moving from the case of n = 46 in Figure 2(d) to n = 56
in Figure 2(e), the performance did not improve further. Of course, there is no
surprise that we obtain more accurate results in 2(d) with n = 46 and m = 100,
compared to Figure 1(e) with m = 50.

3.2 Inverse Problems

Suppose we want to transfer an image, which typically corresponds to a very
large data-set, across a communication channel. One method is to compress
the image into a data-set of much smaller size. On receipt of the compressed
data-set, the original image is estimated. We can use the method discussed in
Murray-Smith and Pearlmutter (2003). If the filtered data are represented by Z,
the transformation matrix used to construct the filtered data is K, and the the
original data-set Y can be estimated by

Y = ΣKT (KΣKT )−1Z.

However, here we construct K in advance by selecting m data points from the
original N data points using the method discussed in Section 2.2. There are two
distinguishing features of this method. First, the filtered data provide approx-
imately the ‘best’ n-dimensional view of the original N -dimensional data-set.
Secondly, KΣKT is approximately a diagonal matrix diag(λ1, · · · , λn), so that
numerically the inversion of KΣKT is well conditioned.

4 Conclusions

In this paper we have developed the work in Murray-Smith & Pearlmutter (2003),
and have proposed a filtering approach based on approximate eigendecomposi-
tions of the covariance matrix, for dealing with large data-sets. There are two
stages. The first stage is to generate a small-sized filtered data-set, which is a
good representation of the original data-set so far as the covariance kernel is
concerned. The second stage carries out model learning and prediction based on
the filtered data. The method can be used in multi-scale learning, the solution
of inverse problems and other areas.
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Abstract. Gaussian Process prior models, as used in Bayesian non-parametric
statistical models methodology are applied to implement a nonlinear adaptive
control law. The expected value of a quadratic cost function is minimised, without
ignoring the variance of the model predictions. This leads to implicit regularisa-
tion of the control signal (caution) in areas of high uncertainty. As a consequence,
the controller has dual features, since it both tracks a reference signal and learns a
model of the system from observed responses. The general method and its unique
features are illustrated on simulation examples.

1 Introduction

Linear control algorithms have been successfully applied to control nonlinear systems,
since they can adapt their parameters to cope the nonlinear characteristics of real sys-
tems. However, their performance degrades as the system undergoes rapid and larger
changes in its operating point. Several authors have proposed the use of non-linear
models as a base to build nonlinear adaptive controllers. Agarwal and Seborg [1], for
instance, have proposed the use of known nonlinearities, capturing the main charac-
teristic of the process, to design a Generalized Minimum Variance type of self-tuning
controller. In many applications, however, these nonlinearities are not known, and non-
linear parameterisation must be used instead. A popular choice has been the use of
Artificial Neural Networks for estimating the nonlinearities of the system [2, 3, 4, 5].
All these works have adopted the certainty equivalence principle for designing the con-
trollers, where the model is used in the control law as if it were the true system. In order
to improve the performance of nonlinear adaptive controllers based on nonlinear mod-
els, the accuracy of the model predictions should also be taken into account. A common
approach to consider the uncertainty in the parameters, is to add an extra term in the
cost function of a Minimum Variance controller, which penalizes the uncertainty in the
parameters of the nonlinear approximation [6]. Another similar approach based on the
minimization of two separate cost functions, has been proposed in [7], the first one is
used to improve the parameter estimation and the second one to drive the system output
to follow a given reference signal. This approach is called bicriterial, and it has also
beeen extended to deal with nonlinear systems [8].
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Most of these engineering applications are still based on parametric models, where
the functional form is fully described by a finite number of parameters, often a lin-
ear function of the parameters. Even in the cases where flexible parametric models are
used, such as neural networks, spline-based models, multiple models etc, the uncer-
tainty is usually expressed as uncertainty of parameters (even though the parameters
often have no physical interpretation), and do not take into account uncertainty about
model structure, or distance of current prediction point from training data used to esti-
mate parameters.

Non-parametric models retain the available data and perform inference conditional
on the current state and local data (called ‘smoothing’ in some frameworks). As the
data are used directly in prediction, unlike the parametric methods more commonly
used in control contexts, non-parametric methods have advantages for off-equilibrium
regions, since normally in these regions the amount of data available for identification
is much smaller than that available in steady state. The uncertainty of model predictions
can be made dependent on local data density, and the model complexity automatically
related to the amount and distribution of available data (more complex models need
more evidence to make them likely). Both aspects are very useful in sparsely-populated
transient regimes. Moreover, since weaker prior assumptions are typically applied in a
non-parametric model, the bias is typically less than in parametric models.

Non-parametric models are also well-suited to initial data analysis and exploration,
as they are powerful models of the data, with robust behaviour despite few prior struc-
tural assumptions. This paper describes an approach based on Gaussian process priors,
as an example of a non-parametric model with particularly nice analytic properties.
This allow us to analytically obtain a control law which perfectly minimises the ex-
pected value of a quadratic cost function, which does not disregard the variance of
the model prediction as an element to be minimised. This leads naturally, and automati-
cally to a suitable combination of regularising caution in control behaviour in following
the reference trajectory, depending on model accuracy. This paper expands on previous
work [9] by making the cost function more flexible, introducing priors and investigating
modelling and control performance for nonlinear systems affine in control inputs.

The above ideas are closely related to the work done on dual adaptive control, where
the main effort has been concentrated on the analysis and design of adaptive controllers
based on the use of the uncertainty associated with parameters of models with fixed
structure [10, 11].

The paper is organised as follows: section 2 describes the characteristics of non-
parametric models. Section 3 introduces Gaussian Process priors. Section 4 illustrates
how to design controllers based on the above representation. In section 5, we illustrate
the control behaviour via simulation. Finally, some conclusions and future directions
are outlined.

2 Controller Design

The objective of this paper is to control a multi-input, single-output, affine nonlinear
system of the form,

y(t + 1) = f(x(t)) + g(x(t))u(t) + ε(t + 1), (1)
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where x(t) is the state vector at a discrete time t, which in this paper will be defined
as x(t) = [y(t), . . . , y(t − n), u(t − 1), . . . , u(t − m)], y(t + 1) the output, u(t) the
current control vector, f and g are unknown smooth nonlinear functions. We also as-
sume that g is bounded away from zero. In addition, it is also assumed that the system is
minimum phase, as defined in [4]. For notational simplicity we consider single control
input systems, but extending the presentation to vector u(t) is trivial. The noise term
ε(t) is assumed zero mean Gaussian, but with unknown variance σ2

n. The control strat-
egy consists in choosing a control variable u(t) so as to minimize the following cost
function:

J = E{(yd(t + 1) − y(t + 1))2} + (R(q−1)u(t))2, (2)

where yd(t) is a bounded reference signal, the polynomial R(q−1) is defined as:

R(q−1) = r0 + r1q
−1 + . . . + rnrq

−nr (3)

where q−1 is a unit backward shift operator. The polynomial coefficients can be used as
tuning parameters.

Using the fact that Var{y} = E{y2}−μ2
y, where μy = E{y}, the cost function can

be written as:

J = (yd(t + 1) − E{y(t + 1)})2 + Var{y(t + 1)} + (R(q−1)u(t))2. (4)

Note that we have not ‘added’ the model uncertainty term, Var{y(t+1)}, to the classical
quadratic cost function – most conventional work has ‘ignored’ it, or have added extra
terms to the cost function [10, 11].

Since f and g are unknown, it will be necessary to use a model to predict the output
of the system.

3 Non-parametric Models: Gaussian Process Priors

In a Bayesian framework the model must be based on a prior distribution over the
infinite-dimensional space of functions. As illustrated in [12], such priors can be defined
as Gaussian processes. These models have attracted a great deal of interest recently, in
for example reviews such as [13]. Rasmussen [14] showed empirically that Gaussian
processes were extremely competitive with leading nonlinear identification methods
on a range of benchmark examples. The further advantage that they provide analytic
predictions of model uncertainty makes them very interesting for control applications.
Use of GPs in a control systems context is discussed in [15, 16]. A variation which can
include ARMA noise models is described in [17]. k-step ahead prediction with GP’s
is described in [18] and integration of prior information in the form of state or control
linearisations is presented in [19].

Let’s assume a model y(i) = h(φ(i))+ε(i), where φ(i) ∈ Rp is the input vector,ε(i)
is a noise term, and y(i) ∈ R is the corresponding output. Instead of parameterizing
h(φ(i)) as a parametric model, we obtain an inference of function h(φ(i)) by computing
the distribution P (h(φ(i))|D, φ(i)) of the scalar output h(φ(i)), given the input vector
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φ(i) and a set of N training data points D = {(φ(i), y(i)) i = 1, 2, .., N}. The given
N data pairs used for identification are stacked in matrices ΦN and yN . The vector
with the stacked values of the function is defined as hN . A Gaussian process represents
the simplest form of prior over functions and introduces a set of N stochastic variables
H(1)...H(N), for modelling the function at the corresponding inputs φ(1)...φ(N) [14].
Then, a multivariable prior distribution with zero mean4 and covariance function KN

is assumed for these variables:

P (h(1)...h(N)|ΦN ) ∝ exp[−1
2
(hT

NK−1
N hN )], (5)

this prior specifies the joint distribution of the function values given the inputs. On
the other hand, the likelihood relates the underlying function which is modeled by the
function h(φ(i)) to the observed outputs y(i), i = 1, .., N . If the noise is assumed
to be Gaussian with some unknown variance σ2

n, then by combining the prior and the
likelihood the distribution of the observed data will simply be:

P (yN |ΦN ) ∝ exp[−1
2
(yT

NC−1
N yN )], (6)

where CN = KN + σ2
nI. The prediction y(N + 1) given the data D and a new input

vector φ(N + 1) can be calculated by obtaining the following conditioned Gaussian
distribution :

P (y(N + 1)|D, φ(N + 1)) =
P (yN+1|ΦN , φ(N + 1))

P (yN |ΦN )

∝ exp[−1
2
(yT

N+1CN+1yN+1 − yT
NCNyN )] (7)

where CN+1 can be partitioned as:

CN+1 =
[
CN k
kT κ

]
. (8)

The partitioned form (8) can be used, as it is illustrated in [21], to obtain the parameters
of the conditioned Gaussian distribution:

P (y(N + 1)|D, φ(N + 1)) =
1

(2πσ̂2
y)

1
2

exp[− (y(t + 1) − μ̂y)2

2σ̂2
y

],

where the mean and variance are:

μ̂y = kT C−1
N yN , (9)

Var{y} = σ̂2
y = κ − kT C−1

N k. (10)

We can use μ̂y(φ(N + 1)) as the expected model output, with a variance of σ̂(φ(N +
1))2. Thus the dynamical system (1) can be modelled under this framework by consider-
ing the input vector as φ(i) = [x(t) u(t)] and the corresponding output y(i) = y(t+1).

4 Note, as explained in [20] the zero mean assumption does not mean that we expect the regres-
sion function to be spread equally on either side of zero. If a covariance function had a large
constant term the actual function could be always positive or always negative over the range
of interest. The zero mean reflects or ignorance as to what that sign will be. There are good
numerical computational reasons for transforming data to be zero mean.
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3.1 The Covariance Function

The Normal assumption may seem strangely restrictive initially, but represents a pow-
erful tool since the model’s prior expectations can be adapted to a given application by
altering the covariance function. The choice of this function is only constrained in that
it must always generate a non-negative definite covariance matrix for any inputs Φ, so
we can represent a spectrum of systems from very local nonlinear models, to standard
linear models using the same framework. The covariance function will also often be
viewed as being the combination of a covariance function due to the underlying model
K and one due to measurement noise Cn. The entries ij of this matrix are then:

CNij = K(ΦNi , ΦNj ; Θ) + Cn(ΦNi , ΦNj ; Θn) (11)

where Θ denotes a set of parameters, which in the GP framework are also called hy-
perparameters. As pointed out in [14] it is convenient to specify priors in terms of the
hyperparameters, which then can be adapted as the model is fit to the identification data.
The covariance associated to the noise Cn() could be δijN (ΦN ; Θn), which would be
adding a noise model N to the diagonal entries of CN . This framework allows the use
of different noise models, as discussed in [17], where ARMA noise models were used.

Since the output is an affine function of the control input, it is reasonable to propose
a covariance function with a contribution from the control inputs as an affine function
as well:

K(φ(i), φ(j); Θ) = Cx(x(i),x(j); Θx) + u(i)Cx(x(i),x(j); Θu)u(j) (12)

where the first term represents the contribution of the state vector and the second one
the contribution of the input signal. The covariance function Cu can be parameterised
in any suitable way. Here, we use the same structure as in Cx above, but with different
set of hyperparameters, Θu, to those used in Cx.

The covariance function for Cx represents a straightforward covariance function
proposed by [14], which has demonstrated to work well in practice:

Cx(x(i),x(j); Θ) = v0ρ(|x(i) − x(j)|, α) +
p∑

k=1

akxk(i)xk(j) + a0, (13)

so that the parameter vector Θ = log[v0, α1,..p, a0]T (the log is applied elementwise)
and p is the dimension of vector x . The parameters are defined to be the log of the
variable in equation (13) since these are positive scale-parameters. The function ρ(d) is
a function of a distance measure d, which should be one at d = 0 and which should be
a monotonically decreasing function of d. The one used here was

ρ(|x(i) − x(j)|, α) = e−
1
2
∑p

k=1 αk(xk(i)−xk(j))2 . (14)

The αk’s determine how quickly the function varies in dimension k. This estimates
the relative smoothness of different input dimensions, and can therefore be viewed as
an automatic relevance detection (ARD) tool [22], which helps weight the importance
of different input dimensions. Other bases which included a nonlinear transformation of
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x, like the RBF neural networks used in [6], could be put into this framework. The prior
associated with this covariance function states that outputs associated with φ’s closer
together should have higher covariance than points further apart.

The Gaussian Process approach to regression is simple and elegant, and can model
nonlinear problems in a probabilistic framework. There tend also to be far fewer param-
eters to identify in the Gaussian Process approach than for competing approaches (such
as e.g. artificial neural networks). The disadvantage is its computational complexity,
as estimating the mean μ̂y requires a matrix inversion of the N × N covariance ma-
trix, which becomes problematic for identification data where N > 1000. In transient
regimes, however, we have very few data points and we wish to make robust estimates
of model behaviour, which are now possible. This suggests that a multiple-model style
partitioning of the state-space could make GPs more feasible in many applications [23].

Adapting the Covariance Function Parameters The hyperparameter vector Θ pro-
vides flexibility to define a family of covariance functions which provide suitable prior
distributions over functions. In most cases we will only have uncertain knowledge of Θ.
Given unknown hyperparameters we can use numerical methods such as Markov-Chain
Monte Carlo (MCMC) to integrate over hyperparameters, or use maximum likelihood
methods, with standard gradient-based optimisation tools to optimise hyperparameters.
The log-likelihood l of the training data can be calculated analytically as [13]:

l = −1
2

log detCN − 1
2
yT

NC−1
N yN − n

2
log 2π. (15)

The partial derivative of the log likelihood with respect to the hyperparameters is:

∂l

∂θi
= −1

2
tr
[
C−1

N

∂CN

∂θi

]
+

1
2
yT

NC−1
N

∂CN

∂θi
C−1

N yN . (16)

Given l and its derivative with respect to θi it is straightforward to use an efficient
optimization program in order to obtain a local maximum of the likelihood.

In parametric models the parameters must to be updated each sampling time, but in
the nonparametric framework this is not necessary, as it will be illustrated in section 5,
since the model also relies on the data contained in the identification data set.

Hierarchical Priors The hyperparameters of the covariance function will rarely be
known exactly in advance, so they are usually given a vague prior distribution, such as
a gamma prior [20].

p(φ) =
(a/2ω)a/2

Γ (a/2)
ψ((a/2)−1) exp

(
−ψa

2ω

)
(17)

where ψ = θ−2 for a hyperparameter θ. a is a positive shape parameter and ω is the
mean of ψ. Large values of a produce priors for θ concentrated near ω−2 and small val-
ues lead to vague priors. Each hyperparameter of the covariance function can be given
an independent prior distribution. If prior distributions on the hyperparameters, such
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as equation (17) are used then obviously these are included in the likelihood equations
and the derivative terms. The use of gamma priors does not add significant complexity
to the optimisation, and if used appropriately makes the model behaviour more robust
with small numbers of training data.

4 Derivation of Control Law

Given the cost function (4), and observations to time t, if we wish to find the optimal
u(t), we need the derivative of J ,

∂J

∂u(t)
= −2 (yd(t + 1) − μy)

∂μy

∂u(t)
+

∂Var{y(t + 1)}
∂u(t)

+ 2r0R(q−1)u(t). (18)

With most models, estimation of Var{y}, or ∂Var{y}
∂u(t) would be difficult, but with the

Gaussian process prior (assuming smooth, differentiable covariance functions – see
[24]) the following straightforward analytic solutions can be obtained:

∂μy

∂u(t)
=

∂kT

∂u(t)
C−1

N yN (19)

∂Var{y}
∂u(t)

=
∂κ

∂u(t)
− 2kT C−1

N

∂k
∂u(t)

. (20)

The covariance matrix k and κ can be expressed in terms of the independent control
variable u(t) as follows:

k = Ω1 + u(t)Ω2 (21)

κ = Ω3 + Ω4u(t)2, (22)

where Ω1 = Cx(x(t), ΦN , Θx), Ω2 = Cx(x(t), ΦN , Θu). ∗ UN , where UN is a vec-
tor with all the values of u(t) contained in the identification data set, and .∗ indicates
elementwise multiplication of two matrices. Ω3 = Cx(x(t),x(t), Θx), and Ω4 =
Cx(x(t),x(t), Θu). The final expressions for μy and Var{y} are:

μy = Ω1C−1
N yN + Ω2C−1

N yNu(t), (23)

Var{y} = Ω3 + Ω4u(t)2 − (Ω1 + u(t)Ω2)C−1
N (Ω1 + u(t)Ω2)T . (24)

Taking the partial derivatives of the variance and the mean expressions and replacing
their values in (18), it follows:

∂J

∂u(t)
= −2

(
yd(t + 1) − Ω1C−1

N yN − Ω2C−1
N yNu(t)

)
(Ω2C−1

N yN )T

+2Ω4u(t) − 2Ω1C−1
N ΩT

2 − 2u(t)Ω2C−1
N ΩT

2 ) + 2r0R(q−1)u(t). (25)

At ∂J
∂u(t) = 0, the optimal control signal is obtained as:

u(t) =
(yd(t + 1) − Ω1C

−1
N yN)(Ω2C

−1
N yN)T + Ω1C

−1
N ΩT

2 − r0(R(q−1) − r0)u(t)

r2
0 + Ω4 − Ω2C

−1
N ΩT

2 + Ω2C
−1
N yN(Ω2C

−1
N yN)T

. (26)
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Note that equation (26) can also be presented as

u(t) =
(yd(t + 1) − Ω1C

−1
N yN )(Ω2C

−1
N yN)T + α(t) − r0(R(q−1) − r0)u(t)

r2
0 + β(t) + Ω2C

−1
N yN(Ω2C

−1
N yN)T

. (27)

where α(t) = Ω1C−1
N ΩT

2 , and β(t) = Ω4 − Ω2C−1
N ΩT

2 . If we had not included the
variance term in cost function (2), or if we were in a region of the state-space where the
variance was zero, the optimal control law would be equation (27) with α = β = 0.
We can therefore see that analysing the values of α and β is a promising approach to
gaining insight into the behaviour of the new form of controller. These terms make a
control effort penalty constant, or regulariser unnecessary in many applications.

4.1 Adapting Control Behaviour with New Data

After u(t) has been calculated, applied, and the output observed, we add the information
x(t), u(t), y(t+1) to the training set, and the new CN increases in size to N+1×N+1.
Obviously, given the expense of inverting CN for large N , this naive approach will
only work for relatively small data sets. For a more general solution, we can potentially
incorporate elements of Relevance Vector Machines [25], or use heuristics for selection
of data for use in an active training set, as in e.g. [26].

We can then choose to optimise the hyperparameters of the covariance function to
further refine the model, or keep the covariance function fixed, and just use the extra
data points to improve model performance. In the next section, will be illustrated the
performance obtained with both strategies.

5 Simulation Results

To illustrate the feasibility of the approach we used it to control several target plants
based on noisy observed responses. We start off with only two training points, and add
subsequent data to the model during operation. The model has had no prior adaptation
to the system before the experiment. A gamma distribution was used for all hyperpa-
rameters, with ω set equal to the initial condition for each variable and shape parameter
a = 3, indicating vague knowledge about the variable. The noise term σn, was given a
tighter distribution, with a = 5. The covariance functions chosen are the same for all
the experiments.

5.1 Non-linear System 1

Let non-linear system 1 be:

y(t + 1) = f(x(t)) + g(x(t))u(t) + ε(t + 1)

where x(t) = y(t), f(x(t)) = sin(y(t)) + cos(3y(t)) and g(x(t)) = 2 + cos(y(t)),
subject to noise with variance σ2

n = 0.001 [6]. Model hyperparameters are adapted after
each iteration using conjugate gradient descent optmisation algorithm.



148 Daniel Sbarbaro and Roderick Murray-Smith

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3

yd
(k

),
y(

k)
,y

e(
k)

k

Nonlinear system 1

yd
Mu
Y
−2σ
+2σ

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

1.5

u(
k)

k

(a) Simulation of nonlinear GP-based controller

0 10 20 30 40 50 60 70 80 90 100
−0.05

0

0.05

0.1

0.15

0.2

al
ph

a(
k)

k

0 10 20 30 40 50 60 70 80 90 100
10

−3

10
−2

10
−1

10
0

10
1

be
ta

(k
)

k

Nonlinear system 1

(b) α and β (regularisation term)

0 10 20 30 40 50 60 70 80 90 100
10

−3

10
−2

10
−1

10
0

10
1

k

pa
ra

m
et

er
s

Nonlinear system 1

ard
x

v
0

σ
n

C
u
 ard

x
C

u
 v

0

(c) Covariance function hyperparameters

Fig. 1. Simulation results for nonlinear system 1, showing modelling accuracy, control
signals, tracking behaviour and levels of α and β at each stage.

Note how in Figure 1 β is large in the early stages of learning, but decreasing with
the decrease in variance, showing how the regularising effect enforces caution in the
face of uncertainty, but reduces caution as the model accuracy increases. In terms of
the hyperparameters, most hyperparameters have converged by about 30 data points.
The noise parameter σn decreases with increasing levels of training data. After this
point the control signal u is also fairly smooth, despite the noisy nature of the data.
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(c) Covariance function hyperparameters

Fig. 2. Simulation results on nonlinear system 1, without including the α and β terms
linked to the model variance in the control law. Data shows modelling accuracy, control
signals and tracking behaviour.

α can be seen to be larger in higher variance regions, essentially adding an excitatory
component which decreases with the decrease in model uncertainty, and in this example
plays almost no role after about iteration 30.

Figure 2 shows control performance on the same system where the variance part of
the cost function is ignored (i.e. α and β are removed from the control law. In order
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to achieve any reasonable control behaviour, we set r0 = 0.5. As can be seen in the
figure, the system still tracks the trajectory, and after iteration 30 there is little visible
difference between the two control laws, but ignoring the variance does lead to the use
of greater control effort, with larger model uncertainty in the early stages of learning.
The hyperparameter estimates also fluctuate much more in the early stages of learning,
when variance is not considered, although both systems converge on similar values
after the initial stages. The constant nature of r0 as a regularising term, as opposed to
the dynamically changing α(t), β(t) makes controller design more difficult, as we can
see that in early stages of learning it tends to be too small, reducing robustness, while
later it is larger than α(t), β(t) damaging performance.

We now plot the nonlinear mappings involved in non-linear system 1, to give the
reader a clearer impression of the adaptation of the system. The surfaces in figure 4
show the development in the mean mapping from x(t), u(t) to y(t + 1) as the system
acquires data, taken from the simulation shown in figure 1 at t = 3, 20, 99. For compar-
ison, figure 5.1 shows the true mapping. Examining the surfaces in figure 4 we can see
how the nonlinear mapping adapts gradually given increasing numbers of data points,
but we also see that the standard deviation of the mapping also evolves in an appropri-
ate manner, indicating clearly at each stage of adaptation the model uncertainty over the
state-space. In the final plot, Figure 4(f) we can see a uniformly low uncertainty in the
areas covered by data, but a rapid increase in uncertainty as we move beyond that in the
x-axis. Note that the uncertainty grows much more slowly in the u-axis because of the
affine assumption inherent in the covariance function, which constrains the freedom of
the model.
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Fig. 3. True surface (mesh) of nonlinear system 1, y(t + 1) = sin(y(t)) + cos(3y(t))+
(2 + cos(y(t)))u(t), over the space y × u.
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Fig. 4. Left-hand figures show mean surface (mesh) y(t + 1) = f(x(t), u(t)) of non-
linear system 1 over the space x×u during the learning process. These can be compared
to the true mapping in Figure 5.1. Right-hand figures show condition standard deviation
σ(x(t), u(t)) surfaces. Each figure also shows the available data at that point in the
learning process.
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5.2 Non-linear System 2

The second nonlinear example considers the following non-linear functions:

f(x(t)) =
y(t)y(t − 1)y(t − 2)u(t − 1)(y(t − 2) − 1)

1 + y(t − 1)2 + y(t − 2)2

g(x(t)) =
1

1 + y(t − 1)2 + y(t − 2)2
,

where x =
[
y(t) y(t − 1) y(t − 2) u(t − 1)

]T
[2]. The system noise has a variance

σ2
n = 0.001, and we had 6 initial data points. The results are shown in Figure 5. Again,

the trend of decreasing α and β can be seen, although they do increase in magnitude
following changes in the system state towards higher uncertainty regions, showing that
the control signal will be appropriately damped when the system moves to a less well-
modelled area of the state-space. The hyperparameters in Figure 5(c) make few rapid
changes, seeming well-behaved during learning.

Figure 6 illustrates the effect of keeping constant the initial set of hyperparameters.
As it can be seen in the figure, even with this set of paramaters, which have values very
far away from the optimal ones, the system is capable of controlling the system.

The next example illustrates the use of the polynomial R(q−1) for shaping the
closed loop response. In this example, it was selected as R(q−1) = ro − roq

−1, so
as to weight the control signal deviations for tuning the speed of response without in-
troducing steady state errors, the associated cost function is:

J = E{(yd(t + 1) − y(t + 1))2} + (r0(u(t) − u(t − 1))2. (28)

The response obtained for a r0 = 0.6 is illustrated in Figure 7, where as we expected
the speed of response is much slower that the case of having no control weighting.

6 Conclusions

This work has presented a novel adaptive controller based on non-parametric models.
The control design is based on the expected value of a quadratic cost function, leading
to a controller that not only will minimise the squared difference between the reference
signal and the expected value of the output, but will also try to minimise the variance
of the output, based on analytical estimates of model uncertainty. This leads to a robust
control action during adaptation, and when extended to multi-step ahead prediction,
forms the basis of full dual control with implicit excitatory components. Simulation
results, considering linear and non-linear systems, demonstrate the interesting charac-
teristics of this type of adaptive control algorithm.

The GP models are capable of high performance, with or without priors being
placed on their hyperparameters. Use of gamma prior distributions led to increased
robustness and higher performance in the early stages of adaptation with very few data
points, but the relative advantage decreases with the amount of initial data available, as
would be expected. Since the predictions are do not only rely on the hyperparameters,
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Fig. 5. Simulation results for nonlinear system 2, showing modelling accuracy, control
signals, tracking behaviour and levels of α and β at each stage.

but also on the training data set, their on-line adaptation can be carried out at a sampling
interval much bigger than the one used for controlling the system.

The additional polynomial term in the cost function can be used to shape the closed
loop response without introducing steady state error.

GP’s have been successfully adopted from their statistics origins by the neural net-
work community [13]. This paper is intended to bring the GP approach to the attention
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Fig. 6. Simulation results for nonlinear system 2 without adapting the hyperparameters,
showing modelling accuracy, control signals, tracking behaviour and levels of α and β
at each stage.
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Fig. 7. Simulation results for nonlinear system 2 with ro = 0.6, r1 = −0.6, showing
modelling accuracy, control signals, tracking behaviour and levels of α and β at each
stage.
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of the control community, and to show that the basic approach is a competitive approach
for modelling and control of nonlinear dynamic systems, even when little attempt has
been made to analyse the designer’s prior knowledge of the system – there is much more
that can be taken from the Bayesian approach to use in the dual control and nonlinear
control areas.

Further work is underway to address the control of multivariable systems, non-
minimum-phase systems and implementation efficiency issues. The robust inference
of the GP approach in sparsely populated spaces makes it particularly promising in
multivariable and high-order systems.
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Abstract. With the Gaussian Process model, the predictive distribu-
tion of the output corresponding to a new given input is Gaussian. But
if this input is uncertain or noisy, the predictive distribution becomes
non-Gaussian. We present an analytical approach that consists of com-
puting only the mean and variance of this new distribution (Gaussian
approximation). We show how, depending on the form of the covariance
function of the process, we can evaluate these moments exactly or ap-
proximately (within a Taylor approximation of the covariance function).
We apply our results to the iterative multiple-step ahead prediction of
non-linear dynamic systems with propagation of the uncertainty as we
predict ahead in time. Finally, using numerical examples, we compare
the Gaussian approximation to the numerical approximation of the true
predictive distribution by simple Monte-Carlo.

1 Background

Given a set of observed data D = {xi, ti}N
i=1, where xi ∈ RD and ti = f(xi)+ε,∈

R (ε is a white noise with variance vt), we model the input/output relationship
using a zero-mean Gaussian Process (GP) with covariance function C(xi,xj).
For the moment, we do not specify the form of the covariance function and
simply assume it is a valid one, generating a positive definite covariance matrix.
We refer to [1, 2, 3, 4] for a review of GPs.

1.1 Prediction at a New x

With this model, given a new ‘test’ input x, and based on the observed data,
the predictive distribution of the corresponding output y = f(x) is readily ob-
tained. This distribution is Gaussian, p(y|D,x) = N (μ(x), σ2(x)), with mean
and variance respectively given by
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μ(x) =

N∑
i=1

βiC(x,xi)

σ2(x) = C(x,x) −
N∑

i,j=1

K−1
ij C(x,xi)C(x,xj)

(1)

with βββ = K−1t, where t is the N × 1 vector of observed noisy targets and K
is the N × N data covariance matrix, such that Kij = C(xi,xj) + vtδij . The
covariances between the new point and the training cases are given by C(x,xi),
for i = 1 . . .N , and C(x,x) is the covariance between the test point and itself.

In practice, the predictive mean μ(x) is used as a point estimate for the
function output, while the variance σ2(x) can be translated into uncertainty
bounds (error-bars) on this estimate. Although this variance corresponds to the
model’s uncertainty (and therefore depends on the prior and on the local data
complexity), it represents valuable information as it enables us to quantify the
uncertainty attached to the prediction. Figure 1 shows the predictive means
and their 2σ error-bars computed for 81 test inputs. A Gaussian Process with
zero-mean and Gaussian covariance function (Eq. (22)) was trained using only
N = 10 points. Near the data points, the predictive variance is small, increasing
as the test inputs are far away from the training ones.
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Fig. 1. Predictive means (dashed line)
and 2σ error-bars (dotted lines) corre-
sponding to 81 noise-free test inputs. A
zero-mean GP was trained on 10 train-
ing points (crosses) to learn the under-
lying function (continuous line).

1.2 Motivation

We first motivate the necessity of being able to make a prediction at an uncertain
or noisy input using a dynamic example.

Dynamic Case Let a time-series be known up to time t and assume a sim-
ple auto-regressive generative model of the form yt+1 = f(yt) where the input
now corresponds to a delayed value of the time-series. Having formed a set of in-
put/output pairs and trained a GP, we wish to predict the value of the time-series
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at, say, time t+k. With our one-step ahead model, we need to iterate predictions
up to the desired horizon, i.e. we have yt+k = f(yt+k−1), yt+k−1 = f(yt+k−2),
so on, down to yt+1 = f(yt). Since yt is known, the predictive distribution of
yt+1 is simply Gaussian, p(yt+1|D, yt) = N (μ(yt), σ2(yt)), with mean and vari-
ance given by (1) evaluated at x = yt. For the next time-step, a naive approach
consists in only using μ(yt) as an estimate for yt+1, ŷt+1 = μ(yt), and evaluate
p(yt+2|D, ŷt+1) = N (μ(ŷt+1), σ2(ŷt+1)). As we will see in our numerical exam-
ples, this approach is not advisable for two reasons: it is over-confident about
the estimate (the variance σ2(ŷt+1) will typically be very small) and it is also
throwing away valuable information, namely, the uncertainty attached to the es-
timate ŷt+1, σ(yt). If we wish to account for this uncertainty, and thus propagate
it as we predict ahead in time, we need to be able to evaluate p(yt+2|D, yt+1)
where yt+1 ∼ N (μ(yt), σ2(yt)). This means being able to evaluate the predictive
distribution corresponding to an uncertain or noisy input, yt+1 here.

Static Case In real experiments and applications, we use sensors and detectors
that can be corrupted by many different sources of disturbances. We might then
only observe a noise corrupted version of the true input and the system senses
the new input imperfectly. Again, if the model does not account for this ‘extra’
uncertainty (as opposed to the uncertainty usually acknowledged on the observed
outputs), the model is too confident, which is misleading and could potentially
be dangerous if, say, the model’s output were to be used in a decision-making
process of a critical application. Note that in this case, the approach we suggest
assumes prior knowledge of the input noise variance.

In the next section, we present the problem of predicting at a noisy input
when using a Gaussian Process model. We then suggest an analytical approxi-
mation and compute the mean and variance of the new predictive distribution
(sections 3 and 4). In section 5, we return to the iterative forecasting of a non-
linear time-series to which we apply our results.

Although most of the material presented in this chapter has already been
published [5, 6, 7], the present document aims at unifying and presenting the
different results in a more principled manner.

2 Prediction at an Uncertain Input

Let the new test input be corrupted by some noise, εεεx ∼ Nεεεx(0,ΣΣΣx), such that
x = u + εεεx. That is, we wish to make a prediction at x ∼ Nx(u,ΣΣΣx) and to
do so, we need to integrate the predictive distribution p(y|D,x) over the input
distribution3

p(y|D,u,ΣΣΣx) =
∫

p(y|D,x)p(x|u,ΣΣΣx)dx . (2)

3 When the bounds are not indicated, it means that the integrals are evaluated from
−∞ to +∞.
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For the GP, we have p(y|D,x) = 1√
2πσ2(x)

exp
[
− 1

2
(y−μ(x))2

σ2(x)

]
, which is a nonlin-

ear function of x, such that this integral cannot be solved without resorting to
approximations.

2.1 Possible Approximations

Many techniques are available to approximate intractable integrals of this kind.
Approximation methods are divided into deterministic approximations and
Monte-Carlo numerical methods. The most popular deterministic approaches
are variational methods,4 Laplace’s method and Gaussian quadrature that con-
sist of analytical approximations of the integral. Refer to [4] for a review of these
methods.

Numerical methods relying on Markov-Chain Monte-Carlo sampling tech-
niques evaluate the integral numerically, thus approximating the true distribu-
tion. In our case, the numerical approximation by simple Monte-Carlo is straight-
forward since we simply need to sample from a Gaussian distribution Nx(u,ΣΣΣx).
For each sample xt from this distribution, p(y|D,xt) is normal, with mean and
variance given by Eqs. (1):

p(y|D,u,ΣΣΣx) � 1
T

T∑
t=1

p(y|D,xt) =
1
T

T∑
t=1

Ny(μ(xt), σ2(xt)) . (3)

The numerical approximation of p(y|D,u,ΣΣΣx) is then a mixture of T Gaus-
sians with identical mixing proportions. As the number of samples T grows, the
approximate distribution will tend to the true distribution.

On Fig. 2, 100 predictive means with their corresponding uncertainties are
plotted, corresponding to 100 samples xt from p(x), centered at the noisy ob-
served input x (asterisks), with variance vx = 1. The ‘true’ test inputs are u = 2
(left) and u = 6 (right). The histograms of the samples at which predictions are
made are shown on Fig. 3. The circle and asterisk indicate the noise-free and
noisy inputs (u and x respectively). After having computed the loss associated
to each xt5, we find that for which the loss is minimum (triangle), which is close
to the true value.

In the remaining of this document, we focus on an analytical approximation
which consists of computing only the first two moments, the mean and vari-
ance, of p(y|D,u,ΣΣΣx). As we will now see, approximate or exact moments are
computed, depending on the form of the covariance function.

2.2 Analytical Approximation

To distinguish from μ(u) and σ2(u), the mean and variance of the Gaussian
predictive distribution p(y|D,u) corresponding to a noise-free u, we denote by
4 Many references can be found at http://www.gatsby.ucl.ac.uk/vbayes/
5 We compute the squared error and the minus log-predictive density, see section 6.
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Fig. 2. Monte-Carlo approximation to the prediction at an observed noisy in-
put x (asterisk). Predictive means μ(xt) (crosses) with 2σ(xt) error-bars (dots),
computed for 100 samples xt from p(x), with mean x and variance vx. The true
input distribution is x ∼ Nx(u, vx), for u = 2 (left), u = 6 (right) and vx = 1.
The circle indicates the output corresponding to the noise-free input u.

m(u,ΣΣΣx) the mean and by v(u,ΣΣΣx) the variance of the non-Gaussian predic-
tive distribution p(y|D,u,ΣΣΣx), corresponding to x ∼ Nx(u,ΣΣΣx). This can be
interpreted as a Gaussian approximation, such that

p(y|D,u,ΣΣΣx) ≈ N (m(u,ΣΣΣx), v(u,ΣΣΣx)) .

This mean and variance are respectively given by

m(u,ΣΣΣx) =
∫

y

{∫
p(y|D,x)p(x|u,ΣΣΣx)dx

}
dy

v(u,ΣΣΣx) =
∫

y2

{∫
p(y|D,x)p(x|u,ΣΣΣx)dx

}
dy − m(u,ΣΣΣx)2 .

Using the law of iterated expectations and that of conditional variances,6 we
directly have

m(u,ΣΣΣx) = Ex[μ(x)] (4)
v(u,ΣΣΣx) = Ex[σ2(x)] + Varx[μ(x)] , (5)

6 Recall that E[X] = E[E[X|Y ]] and Var[X] = E[Var[X|Y ]] + Var[E[X|Y ]].
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Fig. 3. Histogram of the samples xt from p(x) at which predictions were made,
when the true input (circle) is u = 2 (left) and u = 6 (right). Also plotted, the
observed noisy input (asterisk), taken as the mean of p(x), and the sample xt

that leads to the minimum loss (triangle).

where Varx[μ(x)] = Ex[μ(x)2] − m(u,ΣΣΣx)2. Replacing μ(x) and σ2(x) by their
expressions (Eqs. (1)), we finally have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

m(u,ΣΣΣx) =
N∑

i=1

βiEx[C(x,xi)]

v(u,ΣΣΣx)= Ex[C(x,x)] −
N∑

i,j=1

(K−1
ij − βiβj)Ex[C(x,xi)C(x,xj)]− m(u,ΣΣΣx)2 .

(6)
Let

l =
∫

C(x,x)p(x)dx (7)

li =
∫

C(x,xi)p(x)dx (8)

lij =
∫

C(x,xi)C(x,xj)p(x)dx . (9)

How solvable integrals (7)-(9) are basically depends on the form of the covariance
function.

1. If the covariance function is e.g. linear, Gaussian, polynomial (or a mixture
of those), we can compute the integrals exactly and obtain the exact mean
and variance. In section 4, we derive the ‘exact’ moments for the linear and
Gaussian covariance functions.

2. Otherwise, we can again approximate (7)-(9) in a number of ways. Since we
are mostly interested in closed form approximate solutions, we evaluate the
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integrals within a Taylor approximation of the covariance function around
the mean u of x and obtain the ‘approximate’ mean and variance.

Note that this second case might be required, if the form of the covariance
function is definitely one for which one cannot solve the integrals exactly, or
simply preferable, if the integrals are tractable but at the cost of long and tedious
calculations (assuming one has access to software like Mathematica or Matlab’s
symbolic toolbox to compute the derivatives, the solutions obtained using the
proposed approximations provide a suitable performance/implementation trade-
off).

Figure 4 summarizes the different possible approximations and highlights
the analytical one we take. We now turn to the evaluation of the mean and
variance in the case of a ‘general’ the covariance function, that is when further
approximations are needed to evaluate integrals (7)-(9) analytically.

x given

x ~ N(u,v)

p(y|D,x)

p(y|D,u,v):
 integrate p(y|D,x) over x 

Numerical

Analytical

(Approximations)

Compute mean and variance
of p(y|D,u,v)

Approximated
moments

Exact 
moments

Depending 
on C(.,.)

Fig. 4. Dealing with a noisy test input: With the GP model, the predictive
distribution of the output corresponding to a new test input x is readily obtained,
by conditioning on the training data D and on the new x. If x is noisy, such
that x ∼ N (u, v), the new predictive distribution is now obtained by integrating
over the input distribution. Since p(y|D, x) is nonlinear in x, the integral is
analytically intractable. Although a numerical approximation of the integral is
possible, we concentrate on an analytical approximation. We suggest to compute
the mean and the variance of the new predictive distribution, which is done
exactly or approximately, depending on the parametric form of the covariance
function C(., .).
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3 Gaussian Approximation: Approximate Moments

We use the Delta method (also called Moment Approximation), which consists
of approximating the integrand by a Taylor polynomial. In the one-dimensional
case, the Delta method is as follows [8, 9]: Let x be a random variable with
mean Ex[x] = u and variance Varx[x] = vx, and y = φ(x). For sufficiently small
σx =

√
vx and well-behaved φ we can write

Ex[y] � φ(u) +
1
2
vxφ′′(u) (10)

Varx[y] � φ′(u)2vx (11)

where φ′ and φ′′ are the first and second derivatives of φ evaluated at u.

These results are simply obtained by considering the expansion of φ(x) in
Taylor series about u, up to the second order:

y = φ(x) = φ(u) + (x − u)φ′(u) +
1
2
(x − u)2φ′′(u) + O([(x − u)3]) . (12)

By taking the expectation on both sides, we directly find the approximation
(10). For the variance, we have Var[y] = E[y2]−E[y]2 and the estimate given by
(11) corresponds to an approximation of the second order estimate: Neglecting
the term in v2

x for both E[y2] and E[y]2, we have

E[y2] ≈ φ(u)2 + vxφ′(u)2 + φ(u)φ′′(u)vx

E[y]2 ≈ φ(u)2 + φ(u)φ′′(u)vx

leading to (11). This approximation is motivated by the fact that the Taylor
approximation is useful for small standard deviations (if σx is small, by Cheby-
chev’s inequality P (|x − u| > kσx) < 1

k2 ), such that x will depart only a little
from u except on rare occasions and therefore (x − u) will be small.

There are obviously conditions which φ(x) should fulfill to make the Taylor
series possible (in the neighborhood of u) and to avoid anomalies of behavior
away from u. As in [8], we do not state such conditions and assume the covariance
function to be such that the expressions are valid.

3.1 Approximate Mean

Let map(u,ΣΣΣx) be the approximate mean, such that

map(u,ΣΣΣx) =
N∑

i=1

βil
ap
i

with lap
i = Ex[Cap(x,xi)] and where Cap(x,xi) corresponds to the second order

Taylor polynomial of C(x,xi) around the mean u of x,

Cap(x,xi) = C(u,xi) + (x − u)T C′(u,xi) +
1
2
(x − u)T C′′(u,xi)(x − u) .
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We directly have

lap
i = C(u,xi) +

1
2
Tr[C′′(u,xi)ΣΣΣx]

so that the approximate mean is

map(u,ΣΣΣx) = μ(u) +
1
2

N∑
i=1

βiTr[C′′(u,xi)ΣΣΣx] (13)

where μ(u) =
∑N

i=1 βiC(u,xi) is the noise-free predictive mean computed at u.

3.2 Approximate Variance

Similarly, the approximate variance is

vap(u,ΣΣΣx) = lap −
N∑

i,j=1

(K−1
ij − βiβj)l

ap
ij − map(u,ΣΣΣx)2

with lap = Ex[Cap(x,x)] and lap
ij = Ex[Cap(x,xi)Cap(x,xj)], where Cap(., .) is

again the second order Taylor approximation of C(., .). We have

lap = C(u,u) +
1
2
Tr[C′′(u,u)ΣΣΣx]

and

lap
ij ≈ C(u,xi)C(u,xj) + Tr[C′(u,xi)C′(u,xj)TΣΣΣx]+

1
2
C(u,xi)Tr[C′′(u,xj)ΣΣΣx]

+
1
2
C(u,xj)Tr[C′′(u,xi)ΣΣΣx]

where the approximation comes from discarding terms of higher order than ΣΣΣx

in Cap(x,xi)Cap(x,xj), as discussed in the previous section. Similarly, approx-
imating map(u,ΣΣΣx)2 by

map(u,ΣΣΣx)2 ≈
N∑

i,j=1

βiβj

(
C(u,xi)C(u,xj) +

1
2
C(u,xi)Tr[C′′(u,xj)ΣΣΣx]

+
1
2
C(u,xj)Tr[C′′(u,xi)ΣΣΣx]

)
,

we find, after simplifications,

vap(u,ΣΣΣx) =σ2(u) +
1

2
Tr[C′′(u,u)ΣΣΣx] −

N∑
i,j=1

(K−1
ij − βiβj)Tr[C′(u,xi)C

′(u,xj)
TΣΣΣx]

− 1

2

N∑
i,j=1

K−1
ij (C(u,xi)Tr[C′′(u,xj)ΣΣΣx] + C(u,xj)Tr[C′′(u,xi)ΣΣΣx])

(14)
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where σ2(u) = C(u,u) −∑N
i,j=1 K−1

ij C(u,xi)C(u,xj) is the noise-free predic-
tive variance.

Note that these results might be more easily derived by approximating μ(x)
and σ2(x) directly in Eqs. (4) and (5), as done in [5, 7].7 Applying (10) to μ(x),
we have E[μ(x)] � μ(u) + 1

2Tr[μμμ′′(u)ΣΣΣx], and replacing into (4) gives

map(u,ΣΣΣx) = μ(u) +
1
2
Tr[μμμ′′(u)ΣΣΣx] .

Similarly, E[σ2(x)] � σ2(u) + 1
2Tr[σσσ2

′′
(u)ΣΣΣx] and, using (11), Var[μ(x)] �

Tr[μμμ′(u)μμμ′(u)TΣΣΣx]. Replacing into (5) we obtain

vap(u,ΣΣΣx) = σ2(u) + Tr
[(

1
2
σσσ2

′′
(u) + μμμ′(u)μμμ′(u)T

)
ΣΣΣx

]
.

Although, replacing the derivatives by their expressions, these results are obvi-
ously the same as those obtained when working with the covariance function,
working directly with μ(x) and σ2(x) lacks flexibility in that it is not clear that
exact moments can be computed.

Both approximate mean and variance are composed of the noise-free predic-
tive moments plus correction terms. Assuming ΣΣΣx is diagonal, these correction
terms consist of the sum of the derivatives of the covariance function in each
input dimension, weighted by the variance of the new test input in the same di-
rection. Figure 5 illustrates these results. On the x-axis, the asterisks indicate the
observed noisy inputs and the distribution they come from (p(x) = Nx(u, vx), for
u = 2, 6, 9.5 and vx = 1). The circles indicate the function output corresponding
to the noise-free u’s. The approximate means map(u, vx) and associated uncer-
tainties, ±2

√
v

ap(u, vx) are plotted as triangles and dotted lines. We can compare
them to the naive (noise-free) means μ(u) with error-bars ±2σ(u), which do not
account for the noise on the input.

4 Gaussian Approximation: Exact Moments

We are now going to show that in the special cases of the linear and the Gaussian
(squared exponential) covariance functions, we can evaluate integrals (7)-(9)
exactly.

4.1 Case of the Linear Covariance Function

Let us write the linear covariance function as CL(xi,xj) = xT
i Lxj where L =

diag[α1 . . . αD]. In the noise-free case, the prediction at u leads to a Gaussian
distribution with mean and variance
7 In [5, 7], we only considered a first order approximation for the mean μ(x).



168 Agathe Girard and Roderick Murray-Smith

−2 0 2 4 6 8 10
−1

−0.5

0

0.5

1

x

Approximate v Naive

x observed

N(u,v
x
=1) 

f(u) 

map 

+2sqrt(vap)

−2sqrt(vap)

μ

+2σ 

−2σ 
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
μL(u) =

N∑
i=1

βiCL(u,xi)

σ2
L(u) = CL(u,u) −

N∑
i,j=1

K−1
ij CL(u,xi)CL(u,xj) .

(15)

When predicting at a noisy input, the predictive mean and variance are now
given by

mexL(u,ΣΣΣx) =
N∑

i=1

βil
exL

i (16)

vexL(u,ΣΣΣx) = lexL −
N∑

i,j=1

(K−1
ij − βiβj)lexL

ij − mexL(u,ΣΣΣx)2 (17)

so that we need to evaluate

lexL = Ex[CL(x,x)] =
∫

xT LxNx(u,ΣΣΣx)dx

lexL

i = Ex[CL(x,xi)] =
∫

xT LxiNx(u,ΣΣΣx)dx

lexL

ij = Ex[CL(x,xi)CL(x,xj)] =
∫

xT LxixT LxjNx(u,ΣΣΣx)dx .

Using the formula giving the expectation of a quadratic form under a Gaussian8

we directly obtain

8 ∫
x

(x− m)T M−1(x− m)Nx(u,ΣΣΣx)dx = (m− u)T M−1(m − u) + Tr[M−1ΣΣΣx]
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lexL = uT Lu + Tr[LΣΣΣx] = CL(u,u) + Tr[LΣΣΣx]
lexL

i = uT Lxi = CL(u,xi)
lexL

ij = uT (LxixT
j L)u + Tr[LxixT

j LΣΣΣx]=CL(u,xi)CL(xj ,u) + Tr[LxixT
j LΣΣΣx] .

Therefore, the predictive mean is the same as the noise-free one, as we have

mexL(u,ΣΣΣx) =
N∑

i=1

βiCL(u,xi) . (18)

On the other hand, the variance becomes

vexL(u,ΣΣΣx) = CL(u,u) + Tr[LΣΣΣx] −
N∑

i,j=1

(K−1
ij − βiβj)Tr[LxixT

j LΣΣΣx])

−
N∑

i,j=1

K−1
ij CL(u,xi)CL(xj ,u)

(19)

after simplification of the βiβj terms. Or, in terms of the noise-free variance,

vexL(u,ΣΣΣx) = σ2
L(u) + Tr[LΣΣΣx] −

N∑
i,j=1

(K−1
ij − βiβj)Tr[LxixT

j LΣΣΣx]) . (20)

If we note that C′
L(u,xi) = ∂CL(u,xi)

∂u = Lxi and C′′
L(u,u) = ∂2CL(u,u)

∂u∂uT = 2L,
we can also write it as

vexL(u,ΣΣΣx) = σ2
L(u) +

1
2
Tr[C′′

L(u,u)ΣΣΣx]

−
N∑

i,j=1

(K−1
ij − βiβj)Tr[C′

L(x,xi)C′
L(x,xj)TΣΣΣx]) .

(21)

As we would expect, the predictive mean and variance in the case of the linear
covariance function correspond to the approximate moments we would obtain
within a first order approximation of the covariance function.

4.2 Case of the Gaussian Covariance Function

The Gaussian (or squared exponential) covariance function became a popular
choice especially after Rasmussen demonstrated that a GP with such a covariance
function performed as well, if not better, than other models like neural networks
[10]. It is usually expressed as

CG(xi,xj) = v exp
[
−1

2
(xi − xj)T W−1(xi − xj)

]
(22)

with W−1 = diag[w1 . . . wD], where wd is a roughness parameter, inversely pro-
portional to the square of the correlation length in direction d (wd = 1/λ2

d), which
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represents the length along which successive values are strongly correlated (with
a role similar to the Automatic Relevance Determination tool of Mackay and
Neal [11, 12]). The parameter v controls the overall vertical scale relative to the
zero mean of the process in the output space (the vertical amplitude of variation
of a typical function).

We now denote by μG(u) and σ2
G(u) the corresponding noise-free predictive

mean and variance,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
μG(u) =

N∑
i=1

βiCG(u,xi)

σ2
G(u) = CG(u,u) −

N∑
i,j=1

K−1
ij CG(u,xi)CG(u,xj)

(23)

where CG(x,x) = v. In this case, the predictive mean and variance, obtained for
a prediction at x ∼ Nx(u,ΣΣΣx), are given by

mexG(u,ΣΣΣx) =
N∑

i=1

βil
exG

i (24)

vexG(u,ΣΣΣx) = lexG −
N∑

i,j=1

(K−1
ij − βiβj)lexG

ij − mexG(u,ΣΣΣx)2 . (25)

We directly have lexG = Ex[CG(x,x)] = v = CG(u,u), and we need to evaluate

lexG

i = Ex[CG(x,xi)] = c

∫
Nx(xi,W)Nx(u,ΣΣΣx)dx

lexG

ij = Ex[CG(x,xi)CG(x,xj)] = c2

∫
Nx(xi,W)Nx(xj ,W)Nx(u,ΣΣΣx)dx ,

where, for notational convenience, we write the Gaussian covariance function
as9 CG(xi,xj) = cNxi(xj ,W), with c = (2π)D/2|W|1/2v. Using the product of
Gaussians formula,10 we find

lexG

i = cNu(xi,W + ΣΣΣx) . (26)

And for lexG

ij , using this product twice,

lexG

ij = c2Nxi(xj , 2W)Nu

(
xi + xj

2
,ΣΣΣx +

W
2

)
. (27)

9 Note that N(., .) is used to denote the parametric form of the function, it does not
correspond to a normal probability distribution N (., .).

10 Recall that Nx(a, A)Nx(b, B) = zNx(d, D) with D = (A−1+B−1)−1, d = D(A−1a+
B−1b) and z = Na(b, A + B) = Nb(a, A + B).
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Exact Predictive Mean Replacing lexG

i in mexG(u,ΣΣΣx), we have

mexG(u,ΣΣΣx) =
N∑

i=1

βicNu(xi,W + ΣΣΣx) (28)

and we can directly check that, as we would expect, m(u,ΣΣΣx = 0) = μG(u).
It is useful to write mexG(u,ΣΣΣx) as a corrected version of μG(u). Using

the matrix inversion lemma, we have (W + ΣΣΣx)−1 = W−1 − W−1(W−1 +
ΣΣΣ−1

x )−1W−1, leading to

lexG

i = CG(u,xi)Ccorr(u,xi) (29)

with

Ccorr(u,xi) = |I + W−1ΣΣΣx|−1/2 exp
[
1
2
(u − xi)T Δ−1(u − xi)

]
(30)

where Δ−1 = W−1(W−1 +ΣΣΣ−1
x )−1W−1. The predictive mean is then given by

mexG(u,ΣΣΣx) =
N∑

i=1

βiCG(u,xi)Ccorr(u,xi) . (31)

Compared to the noise-free μG(u), the covariances between the new noisy in-
put and the training inputs, formerly given by CG(u,xi), are now weighted by
Ccorr(u,xi), thus accounting for the uncertainty associated to u.

Exact Predictive Variance Replacing lexG

ij by its expression, we have

vexG(u,ΣΣΣx) = CG(u,u) − c2
N∑

i,j=1

(K−1
ij − βiβj)Nxi(xj , 2W)Nu

(
xi + xj

2
,ΣΣΣx +

W

2

)
−mexG(u,ΣΣΣx)2

and again, we can show that for ΣΣΣx = 0, we have vexG(u,ΣΣΣx = 0) = σ2
G(u).11

11 We have

vexG(u,ΣΣΣx = 0) = CG(u,u) − c2
N∑

i,j=1

(K−1
ij − βiβj)Nxi(xj , 2W)Nu

(
xi + xj

2
,
W

2

)
−mexG(u,ΣΣΣx = 0)2

with mexG(u,ΣΣΣx = 0)2 = c2∑N
i,j=1 βiβjNxi (xj , 2W)Nu

(
xi+xj

2
, W

2

)
,

to be compared to the noise-free predictive variance that we can write

σ2
G(u) = CG(u, u) − c2

∑N
i,j=1 K−1

ij Nxi (xj , 2W)Nu

(
xi+xj

2
, W

2

)
, using

Nu(xi,W)Nu(xj ,W) = Nxi(xj , 2W)Nu

(
xi+xj

2
, W

2

)
.
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As done for the predictive mean, we can find another form for vexG(u,ΣΣΣx)
where the Gaussian covariance function appears weighted by a correction term.
It can be shown that we can write lexG

ij as

lexG

ij = CG(u,xi)CG(u,xj)Ccorr2(u, x̄)

where x̄ = xi+xj

2 and

Ccorr2(u, x̄) =

∣∣∣∣∣
(

W
2

)−1

ΣΣΣx + I

∣∣∣∣∣
−1/2

exp
[
1
2
(u− x̄)T Λ−1(u − x̄)

]
(32)

with Λ−1 =
(
W
2

)−1
((

W
2

)−1
+ ΣΣΣ−1

x

)−1 (
W
2

)−1
.

In terms of σ2
G(u), we can then write

vexG(u,ΣΣΣx) = σ2
G(u) +

N∑
i,j=1

K−1
ij CG(u,xi)CG(u,xj)(1 − Ccorr2(u, x̄))

+
N∑

i,j=1

βiβjCG(u,xi)CG(u,xj)(Ccorr2(u, x̄) − Ccorr(u,xi)Ccorr(u,xj)) ,

(33)

where we have used
mexG(u,ΣΣΣx)2 =

∑N
i,j=1 βiβjCG(u,xi)Ccorr(u,xi)CG(u,xj)Ccorr(u,xj).

Although we will not give the details of the calculations here, it can be
shown that these predictive mean and variance tend to the approximate mean
and variance presented in section 3 when ΣΣΣx tends to zero (so that we can
approximate ex by 1 + x). As Figure 5 for the approximate moments, Figure
6 shows the exact predictive mean and error-bars (triangles) obtained when
predicting at noisy inputs (asterisks).

−2 0 2 4 6 8 10
−1

−0.5

0

0.5

1

x

Exact v Naive

x observed 

N(u,v
x
=1) 

+2sqrt(vex)

−2sqrt(vex)

mex 

f(u) 

μ 

+2σ 

−2σ 

Fig. 6. As in Fig. 5, the triangles now
indicate the exact predictive means with
their error-bars, accounting for the un-
certainty on the noisy inputs (asterisks).
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5 Iterative k-step Ahead Prediction

Using the results derived in the previous sections, we now derive an algorithm
for propagating the uncertainty as we predict ahead in time the output of a
nonlinear dynamic system, represented by on one-step ahead non-linear auto-
regressive (NAR) model.

At this point, it might be useful to recall the different notations used, de-
pending on the situation, as done in Table 1. It is important not to forget that
the predictive distribution corresponding to a noise-free u is Gaussian but it is
not when predicting at x ∼ Nx(u,ΣΣΣx). We only compute its mean and variance,
which is done exactly when the covariance function is e.g. Gaussian or linear, or
approximately, in the general case.

Table 1. Notation used, depending on the type of covariance function (left
column) and whether the prediction is at a noise-free or a noisy input. (‘Where’
in the document the corresponding equations can be found is indicated in small
fonts.)

Covariance function Prediction at u Prediction at x ∼ Nx(u,ΣΣΣx)

General μ(u), σ2(u) map(u,ΣΣΣx) Eq. (13)

Eqs. (1), at u vap(u,ΣΣΣx) Eq. (14)

Linear μL(u), σ2
L(u) mexL(u,ΣΣΣx) Eq. (18)

Eqs. (15) vexL(u,ΣΣΣx) Eq. (21)

Gaussian μG(u), σ2
G(u) mexG(u,ΣΣΣx) Eq. (31)

Eqs. (23) vexG(u,ΣΣΣx) Eq. (33)

5.1 Background

Given a discrete one-dimensional time-series y1, . . . , yt, we wish to predict its
value at, say, time t + k. Viewing the observed time-series as a projection of the
dynamics of the underlying system, which lie in a higher dimensional space [13],
we consider the following non-linear auto-regressive (NAR) model

yt+1 = f(xt) with xt = [yt, yt−1, . . . , yt−L]T , (34)

whose order, L, corresponds to the dimension of the reconstructed space (number
of delayed outputs, called lag or embedding dimension). The state (or input) at
time t is xt and yt+1 is the corresponding output. Note that in practise, yt+1 is
alone considered as noisy (yt+1 = f(xt) + εt+1). Here, we simply assume that
εt+1 is a white noise but colored noise models can also be considered, as in [14].

Using this one-step ahead model, the iterative k-step ahead prediction task
can be thought of as a missing or noisy data modelling problem12 since what
12 The missing variables can be seen as noisy variables for complete noise.
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we want is to predict yt+k, when yt+k−1 down to yt are missing, provided the
time-series is known up to time t. This problem has been the scope of much
research (see e.g. [15, 16]) but has not yet been addressed for the GP model. A
naive way of solving the iterative multiple-step ahead prediction task is simply
to substitute a single value to the missing value (say the value of the time-series
at another time-step, or a maximum likelihood estimate) but this approach has
been shown not to be optimal and to lead to biased predictions [17, 15]. In
[18], long-term predictions are improved by eliminating the systematic errors
induced by each successive short term prediction, by considering a function of
the estimates.

Using our approximation for the prediction at a noisy input, we suggest to
incorporate the uncertainty about intermediate regressor values as we predict
ahead in time. This results in an update of the uncertainty on the current pre-
diction and therefore an improvement of each successive predictions.

5.2 Propagation of Uncertainty Algorithm

We assume that a zero-mean GP model was trained to minimize the one-step
ahead predictions of a time-series known up to time t. By propagating the uncer-
tainty as we predict ahead in time, we mean that for yt+k =f(yt+k−1, . . . ,yt+k−L),
we consider the delayed yt+k−1, . . . , yt+k−L as Gaussian random variables, with
mean m(., .) and variance v(., .), computed either approximately or exactly, de-
pending on the covariance function of the process.

Here is a sketch of how we proceed:

– Time t+1, xt+1 = [yt, . . . , yt−L]T : Since the state is formed on known values
of the time-series, we simply have yt+1 ∼ N (μ(xt+1, σ

2(xt+1)).
– Time t + 2, xt+2 = [yt+1, yt, . . . , yt+1−L]T ∼ N (ut+2,ΣΣΣt+2) with

ut+2 =

⎡⎢⎢⎢⎣
μ(xt+1)

yt

...
yt+1−L

⎤⎥⎥⎥⎦ and ΣΣΣt+2 =

⎡⎢⎢⎢⎣
σ2(xt+1) 0 . . . 0

0 0 . . . 0
...

...
...

...
0 . . . . . . 0

⎤⎥⎥⎥⎦ .

Within our analytical approximation, we only compute the mean and vari-
ance of yt+2 and consider yt+2 ∼ N (m(ut+2,ΣΣΣt+2), v(ut+2,ΣΣΣt+2)).

– Time t + 3, xt+3 = [yt+2, yt+1, . . . , yt+2−L]T ∼ N (ut+3,ΣΣΣt+3) with

ut+3 =

⎡⎢⎢⎢⎢⎢⎣
m(xt+2)
μ(xt+1)

yt

...
yt+2−L

⎤⎥⎥⎥⎥⎥⎦ and ΣΣΣt+3 =

⎡⎢⎢⎢⎢⎢⎣
v(xt+2) Cov[yt+2, yt+1] 0 . . . 0

Cov[yt+1, yt+2] σ2(xt+1) 0 . . . 0
0 0 0 . . . 0
...

...
...

...
...

0 . . . . . . . . . 0

⎤⎥⎥⎥⎥⎥⎦ .

Compute yt+3 ∼ N (m(ut+3,ΣΣΣt+3), v(ut+3,ΣΣΣt+3)).
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Repeating this procedure up to the desired horizon k, and assuming k > L,
at t + k, we have xt+k = [yt+k−1, yt+k−2, . . . , yt+k−L]T ∼ N (ut+k,ΣΣΣt+k) and
compute yt+k ∼ N (m(ut+k,ΣΣΣt+k), v(ut+k,ΣΣΣt+k)). The input mean is then given
by

ut+k = [m(xt+k−1), m(xt+k−2), . . . , m(xt+k−L)]T

and the input covariance matrix is

ΣΣΣt+k =

⎡⎢⎢⎣
v(xt+k−1) Cov[yt+k−1, yt+k−2] . . . Cov[yt+k−1, yt+k−L]

Cov[yt+k−2, yt+k−1] v(xt+k−2) . . . Cov[yt+k−2, yt+k−L]
. . . . . . . . . . . .

Cov[yt+k−L, yt+k−1] Cov[yt+k−L, yt+k−2] . . . v(xt+k−L)

⎤⎥⎥⎦ .

We now need to compute the cross-covariance terms: In general, at time t+ l,
we have the random input vector xt+l = [yt+l−1, . . . , yt+l−L]T ∼ N (ut+l,ΣΣΣt+l).
The L × L covariance matrix ΣΣΣt+l has the delayed predictive variances on its
diagonal and the cross-covariance terms correspond to the covariances between
yt+l−i and yt+l−j , for i, j = 1 . . . L with i �= j. Discarding the last (oldest)
element of xt+l, we need to compute Cov[yt+l−i, yt+l−j ] = Cov[yt+l,xt+l], that
is

Cov[yt+l,xt+l] = E[yt+lxt+l] − E[yt+l]E[xt+l] (35)

where E[yt+l] = m(ut+l,ΣΣΣt+l) and E[xt+l] = ut+l. For the expectation of the
product, we have

E[yt+lxt+l] =
∫ ∫

yt+lxt+lp(yt+l,xt+l)dyt+ldxt+l

=
∫ ∫

yt+lxt+lp(yt+l|xt+l)p(xt+l)dyt+ldxt+l

and since
∫

yt+lp(yt+l|xt+l)dyt+l = μ(xt+l), we can write

E[yt+lxt+l] =
∫

xt+lμ(xt+l)p(xt+l)dxt+l .

Replacing μ(xt+l) by its expression, we have

E[yt+lxt+l] =
∑

i

βi

∫
xt+lC(xt+l,xi)p(xt+l)dxt+l . (36)

Depending on the form of C(., .), we evaluate this integral exactly or approxi-
mately. Denoting xt+l by x for notational convenience, let Ii =

∫
xC(x,xi)p(x)dx

be the integral we wish to solve.

Gaussian Case In the case of the Gaussian covariance function, we have
m(., .) = mexG(., .) and v(., .) = vexG(., .), as given by Eqs. (31) and (33).

Using a similar notation as in section 4.2, we need to solve

IexG

i = c

∫
xNx(xi,W)p(x)dx
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where C(x,xi) = cNx(xi,W), with c = (2π)D/2|W|1/2v. As before, using the
product of Gaussians, we find

IexG

i = cNu(xi,W + ΣΣΣx)[(I + WΣΣΣ−1
x )−1xi + (I + ΣΣΣxW−1)−1u]

where cNu(xi,W +ΣΣΣx) = C(u,xi)Ccorr(u,xi), with Ccorr(u,xi) given by (30).
We can then write

E[yt+lxt+l]=
∑

i

βiC(ut+l,xi)Ccorr(ut+l,xi)[(I+WΣΣΣ−1
t+l)

−1xi+(I+ΣΣΣt+lW
−1)−1ut+l] .

After simplifications, the cross-covariance terms are given by

Cov[yt+l,xt+l] =
∑

i

βiC(ut+l,xi)Ccorr(ut+l,xi)(I + WΣΣΣ−1
t+l)

−1xi . (37)

General Case When the covariance function is such that approximations are
needed, the predictive mean and variance corresponding to a noisy input are
given by m(., .) = map(., .), using Eq. (13) and v(., .) = vap(., .), using (14).

For the computation of the cross-covariances, we resort to a second order
Taylor approximation of the covariance function, as in section 3. We then have13

Iap
i ≈ uT C(u,xi) + C′(u,xi)TΣΣΣx +

1
2
uT Tr[ΣΣΣxC′′(u,xi)] .

After simplifications, we obtain the following expression for the cross-covariance
terms

Cov[yt+l,xt+l] =
∑

i

βiC′(ut+l,xi)TΣΣΣt+l. (38)

6 Numerical Examples

For clarity, we will denote the different approaches as follows:

– MC, for the Monte-Carlo approximation to the true predictive distribution
corresponding to a noisy input;

– A, for the Gaussian approximation that computes only the mean and vari-
ance of this distribution, and specifically Aap when these moments are com-
puted using the Taylor approximation, and Aex when they are computed
exactly;

13 This result was obtained by extending the one-dimensional case to L-dimensions. In
1D, we have

Iap
i ≈

∫
x

(
C(u, xi) + (x − u)C′(u, xi) +

1

2
(x − u)2C′′(u, xi)

)
p(x)dx

≈ uC(u, xi) + vxC′(u, xi) +
1

2
uvxC′′(u, xi)

where we have used
∫

x2p(x)dx = vx + u2 and
∫

x3p(x)dx = 3uvx + u3.
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– N , for the naive predictive mean and variances that do not account for the
noise on the input.

We assess the performance of the different methods by computing the av-
erage squared error (E1), over the test set, and average minus log predictive
density (E2), which measures the density of the actual true test output under
the Gaussian predictive distribution and use its negative log as a measure of
loss. To assess the performance of the Monte-Carlo approximation, we compute
the squared error and minus log-likelihood loss for the predictions given by each
sample and average over the number of samples. We also compute the average
predictive mean (sample mean) and average predictive variance (sample vari-
ance) and compute the associated losses.

6.1 A Simple Comparison on a Static Example

On the static example previously used, we compare the different approaches for
the prediction at a noisy input, when the true noise-free input is 2 (left) and 6
(right) and the input noise variance is 1. Figure 7 shows the predictive distri-
bution given by MC (continuous), N (dashed), Aap (dots) and Aex (asterisks).
Note how the naive approach leads to a narrow distribution (N), peaked around
its mean value, since it does not account for the uncertainty on the input. The
Monte-Carlo approximation to the true distribution highlights how the true dis-
tribution is non-Gaussian.
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Fig. 7. Predictive distributions (on the y-axis) obtained when predicting at a
noisy input: MC is the numerical approximation by simple Monte-Carlo, Aex

and Aap correspond to the Gaussian approximation with moments computed
exactly and approximately. N is the naive predictive distribution that does not
account for the noise on the input.

For both the prediction at x = 2.4 (left) and x = 6.9 (right), Figure 8 shows
the histogram of the losses (squared error E1 on the left and minus log predic-
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tive density E2 on the right) computed for each of the 100 samples given by
the Monte-Carlo approximation. The minus-log predictive density loss is a very
useful quantitative measure to assess the ‘goodness’ or quality of an approach
as, unlike the squared error loss, it also accounts for the variance (or uncer-
tainty) attached to the mean predictions. Table 2 summarizes the average losses
obtained for each method (average over three test points). In this table, the
losses reported for MC correspond to those obtained using the average sample
mean and variance (average over 100 samples). We can also compute the losses
associated to each sample and average those. We then obtain E1 = 0.42 and
E2 = 25.09.
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Fig. 8. Squared error (E1) and minus log-likelihood (E2) computed for 100 sam-
ples of the Monte-Carlo approximation (for the observed noisy x = 2.4, left and
x = 6.9, right).

Table 2. Average squared error E1 and minus log-predictive density E2 over
three test points obtained for the different approaches.

Loss N Aap Aex MC

E1 0.009 0.004 0.005 0.004

E2 7.685 −0.53 −0.635 −0.58

From this simple static example, for which the input noise variance is assumed
to be known, we can conclude that our Gaussian approximation leads to results
comparable to those obtained by simple Monte-Carlo, which approximates the
true distribution.
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6.2 Dynamic Case

The Mackey-Glass chaotic time-series constitutes a well-known challenging bench-
mark for the multiple-step ahead prediction task, due to its strong non-linearity
[19]. We consider dy(t)

dt = −by(t)+a y(t−τ)
1+y(t−τ)10 , with a = 0.2, b = 0.1 and τ = 17.

The series is re-sampled with period 1 and normalized. We then assume the
following NAR model yt+1 = f(yt, yt−1, . . . , yt−L), where L = 16 and we cor-
rupt the output yt+1 by a white noise with variance 0.001. Having formed the
input/output pairs, we train a zero-mean Gaussian Process with a Gaussian co-
variance function14 on 100 points (taken at random). We first validate the model
on one-step ahead predictions: We obtain E1 = 4.41 10−4, E2 = −2.16 where
the average is taken over Nt = 1000 test points. After performing a simulation
of the test set (i.e. Nt-steps ahead prediction, where Nt is the length of the test
set), we decide to make k = 100 steps ahead predictions (which corresponds to
the horizon up to which predictions are ‘reasonably good’).

This example is intended to illustrate the propagation of uncertainty algo-
rithm, described in section 5.2. We assess the quality of the predictions obtained
using the approximate moments, given by the Gaussian approximation, by com-
paring them to the exact ones. We also compare the ‘exact predictions’ to those
given by the naive approach, that feeds back only the predictive means as we
predict ahead in time. Let t be the time up to which the time-series is known.
Fig. 9 (top plots) shows the mean predictions (left) with their associated uncer-
tainties (right) from t + 1 to t + 100. The crosses indicate the exact moments
given by the Gaussian approximation (Aex), the circles indicate the approximate
moments (Aap) and the dots the naive moments (N) that ignore the uncertainty
induced by each successive prediction. We can see that up to around 60 steps
ahead, the predictive means given by the different approaches are very similar.
The uncertainty bars given by naive approach are very tight and the model is
overly confident about its mean predictions. On the other hand, both the exact
and approximate error-bars reflect well the fact that, as we predict ahead in
time, less information is available and the estimates (predictive means) become
more and more uncertain. On Fig. 9, the bottom left figure shows the 100-step
ahead predictive means with their uncertainty. The upper plot shows the predic-
tive means given by the naive approach, with their 2σ error-bars which are so
tight that one cannot distinguish them from the means. The middle and bottom
plots show respectively the approximate and exact 100-step ahead means where
the shaded area corresponds to the uncertainty interval. On the right, we can see
the evolution of the average squared error (left) and minus log-predictive density
(right, on a log-scale), as the number of steps increases from one to 100. In this
case, both losses clearly indicate that as the number of steps increases, the naive
approach leads to poor predictions. These plots also show that, although not as
good as Aex, the predictions given by the approximate moments Aap are quite
encouraging.

14 The covariance function is that given by Eq. (22) with v = 1.
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Fig. 9. Top plots: Iterative method in action on the Mackey-Glass time-series.
Mean predictions (left) and uncertainty error bars (right) from 1 to 100 steps
ahead, given by the exact moments Aap (crosses), the approximate ones Aap

(circles) and the naive ones (dots). Bottom plots: 100-step ahead prediction of
a portion of the time-series (left). From top to bottom: naive, approximate and
exact means with the uncertainty region shaded. Right: Evolution of the average
losses as the number of steps ahead increases from one to 100 (E1 is the average
squared error and E2 the minus log-predictive density, on a log-scale)

We now turn to comparing the Gaussian approximation (exact moments) to
the approximation of the true distribution by Monte-Carlo (MC). The Monte-
Carlo approximation for the 100-step ahead prediction is done as follows: At t+1,
compute p(yt+1|D,xt+1) = N (μ(xt+1), σ2(xt+1)) where xt+1 = [yt, yt−1, . . . ,
yt−16]. At t+2, draw a sample ys

t+1 from p(yt+1|D,xt+1), form the state xt+2 =
[ys

t+1, yt, . . . , yt−15] and compute p(yt+2|D,xt+2) = N (μ(xt+2), σ2(xt+2)). So on,
up to t + 100. Then, go back to t + 1 and repeat the whole process. We repeat
this S = 1000 times (s = 1 . . . S), so that we finally obtain 1000 samples for
each time-step. Finally, we do so for 100 different ‘starting times t’ (i.e. 100 test



Gaussian Processes: Prediction at a Noisy Input 181

inputs), resulting in a 100 × S × k matrix of predictive means and variances,
where S is the number of samples and k is the prediction horizon (k = 100). Fig.
10 shows the predictive uncertainties from t + 1 to t + 100.
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Fig. 10. Left: 1000 predictive error-bars from the Monte-Carlo approximation,
from t + 1 to t + k, where k = 100 steps ahead. Also plotted, the predictive
uncertainties given by the exact method Aex (continuous lines). At t + k, for
k = 10, 60, 100, we plot the corresponding predictive distribution(right plot), as
it is approximated numerically by Monte-Carlo (dotted line) and analytically,
by the Gaussian with exact moments (continuous).

This experiment clearly validates our analytical approximation of the true
predictive distribution as we can see that the error bars given by the exact
moments encompass those of the samples from the Monte-Carlo approximation.
It is interesting noting how the approximation to the true distribution is long-
tailed at 100 step-ahead.

Table 3, reports the average losses computed for the different approaches.
(Note that since the Monte-Carlo approach uses only 100 test points, all losses
are averaged over 100 points only.) The reported losses for MC correspond
to the those computed using the average sample mean and variance. We can
also compute the losses given by each single prediction and average them. We
then obtain E1 = 0.72 and E2 = 340.27. These results for the Monte-Carlo
approximation might look surprising but one should keep in mind that estimating
the quality of this approximation with these losses is not really representative
(since the distribution is not normal).

7 Conclusions

We have presented an original solution to the problem of iterative multiple-step
ahead prediction of nonlinear dynamic systems within a NAR representation.
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Table 3. Average (over 100 test points) squared error (E1) and minus log pre-
dictive density (E2) for the k = 100 step ahead predictions.

N Aap Aex MC

E1 0.52 0.75 0.35 0.38

E2 243.46 1.55 0.94 172.51

We do so by first showing how predicting at an uncertain or noisy input can
be done within an analytical approximation of the predictive distribution of
the Gaussian Process model (note that this approach is valid for other kernel-
based models like the Relevance Vector Machines, see [20]). In experiments on
simulated dynamic systems, we show that this analytical approach 1, performs
as well as a numerical Monte-Carlo approximation of the true distribution and 2,
propagating the uncertainty as we predict ahead in time improves the multiple-
step ahead prediction task, achieving more realistic prediction variances than
a method that uses only output estimates and thus ignores the uncertainty on
current state.

In the derivation of the mean and variance of the predictive distribution,
we show how exact or approximate moments are obtained, depending on the
form of the covariance function. In the case of the Gaussian covariance function,
for which exact moments are available, a numerical example proves that the
approximate moments, computed using the Gaussian covariance function, lead
to almost similar results as those obtained using the exact moments, which is
encouraging for using the approximation.

Explicitly using the predictive variance has been recently successfully used
in a control context [21] and also the propagation of uncertainty methodology,
in a model predictive control framework where knowledge of the accuracy of the
model predictions over the whole prediction horizon is required (see [22]).

In this chapter, we do not address the problem of learning in the presence
of noisy inputs (we have assumed that the training inputs were noise-free). This
is the subject of ongoing research. We suggest an approximation similar to that
presented here: Assuming the input noise is white, the new non-Gaussian pro-
cess can be approximated by a GP. We then derive its covariance function that
accounts for the input noise variance, which is then learnt as an extra parameter.
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Abstract. Gaussian process models provide a probabilistic non-para-
metric modelling approach for black-box identification of nonlinear dy-
namic systems. The Gaussian processes can highlight areas of the in-
put space where prediction quality is poor, due to the lack of data or
its complexity, by indicating the higher variance around the predicted
mean. Gaussian process models contain noticeably less coefficients to
be optimized. This chapter illustrates possible application of Gaussian
process models within model predictive control. The extra information
provided by the Gaussian process model is used in predictive control,
where optimization of the control signal takes the variance information
into account. The predictive control principle is demonstrated via the
control of a pH process benchmark.

1 Introduction

Model Predictive Control (MPC) is a common name for computer control algo-
rithms that use an explicit process model to predict the future plant response.
According to this prediction in the chosen period, also known as the prediction
horizon, the MPC algorithm optimizes the manipulated variable to obtain an
optimal future plant response. The input of chosen length, also known as control
horizon, is sent to the plant and then the entire sequence is repeated again in
the next time period. The popularity of MPC is to a great extent owed to the
ability of MPC algorithms to deal with constraints that are frequently met in
control practice and are often not well addressed by other approaches. MPC
algorithms can handle hard state and rate constraints on inputs and states that
are usually, but not always incorporated in the algorithms via an optimization
method. Linear model predictive control approaches [13] started appearing in
the early eighties and are well-established in control practice (e.g. [18] for an
overview). Nonlinear model predictive control (NMPC) approaches [1] started
to appear about ten years later and have also found their way into control prac-
tice (e.g. [19,23]) though their popularity can not be compared to linear model
predictive control. This fact is connected with the difficulty in nonlinear model
construction and with the lack of the necessary confidence in the model. There
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were a number of contributions in the field of nonlinear model predictive control
dealing with issues like stability, efficient computation, optimization, constraints
and others. Some recent work in this field can be found in [2,12]. NMPC algo-
rithms are based on various nonlinear models. Often these models are developed
as first principles models, but other approaches, like black-box identification ap-
proaches are also popular. Various predictive control algorithms are based on
neural network models e.g. [17], fuzzy models e.g. [8] or local model networks
e.g. [6]. The quality of control depends on the quality of the model. New devel-
opments in NMPC approaches are coming from resolving various issues: from
faster optimization methods to different process model. The contribution of this
chapter is to describe a NMPC principle with a Gaussian process model. The
Gaussian process model is an example of a probabilistic non-parametric model
that also provides information about prediction uncertainties which are difficult
to evaluate appropriately in nonlinear parametric models. The majority of work
on Gaussian processes shown up to now considers modelling of static nonlinear-
ities. The use of Gaussian processes in modelling dynamic systems is a recent
development e.g. [15,14,3,21,10,11] and some control algorithms based on such
are described in [16,5].

The chapter is organized as follows. Dynamic Gaussian process models are
briefly introduced in the next section. The control algorithm principle is de-
scribed in Section 3 and illustrated with the benchmark pH process control in
Section 4. Conclusions are stated at the end of the chapter.

2 Modelling of Dynamic Systems with Gaussian
Processes

A Gaussian process is an example of the use of a flexible, probabilistic, non-
parametric model which directly provides us with uncertainty predictions. Its
use and properties for modelling are reviewed in [22].

A Gaussian process is a collection of random variables which have a joint
multivariate Gaussian distribution. Assuming a relationship of the form y =
f(x) between an input x and output y, we have y1, . . . , yn ∼ N (0, Σ), where
Σpq = Cov(yp, yq) = C(xp,xq) gives the covariance between output points corre-
sponding to input points xp and xq. Thus, the mean μ(x) (usually assumed to be
zero) and the covariance function C(xp,xq) fully specify the Gaussian process.
Note that the covariance function C(., .) can be any function with the property
that it generates a positive definite covariance matrix.

A common choice is

C(xp,xq) = v1 exp

[
−1

2

D∑
d=1

wd(xd
p − xd

q)
2

]
+ v0 (1)

where ΘΘΘ = [w1 . . . wD v0 v1]T are the ‘hyperparameters’ of the covariance func-
tions and D the input dimension. Other forms of covariance functions suitable
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for different applications can be found in [20]. For a given problem, the parame-
ters are learned (identified) using the data at hand. After the learning, one can
use the w parameters as indicators of ‘how important’ the corresponding input
components (dimensions) are: if wd is zero or near zero it means that the inputs
in dimension d contain little information and could possibly be removed.

Consider a set of N D-dimensional input vectors X = [x1,x2, . . . ,xN ] and
a vector of output data y = [y1, y2, . . . , yN ]T . Based on the data (X,y), and
given a new input vector x∗, we wish to find the predictive distribution of the
corresponding output y∗. Unlike other models, there is no model parameter de-
termination as such, within a fixed model structure. With this model, most of the
effort consists in tuning the parameters of the covariance function. This is done
by maximizing the log-likelihood of the parameters, which is computationally
relatively demanding since the inverse of the data covariance matrix (N × N)
has to be calculated at every iteration.

The described approach can be easily utilized for regression calculation.
Based on training set X a covariance matrix K of size N ×N is determined. As
already mentioned before the aim is to find the distribution of the corresponding
output y∗ at some new input vector x∗ = [x1(N +1), x2(N +1), . . . , xD(N +1)]T .

For a new test input x∗, the predictive distribution of the corresponding
output is y∗|x∗, (X,y) and is Gaussian, with mean and variance

μ(x∗) = k(x∗)T K−1 y (2)
σ2(x∗) = k(x∗) − k(x∗)T K−1 k(x∗) + v0 (3)

where k(x∗) = [C(x1,x∗), . . . , C(xN ,x∗)]T is the N × 1 vector of covariances
between the test and training cases and k(x∗) = C(x∗,x∗) is the covariance
between the test input and itself.

For multi-step ahead prediction we have to take account of the uncertainty of
future predictions which provide the ‘inputs’ for estimating further means and
uncertainties.

If we now consider a new random input, x∗ ∼ N (μx∗ , Σx∗), Girard et. al. [3],
have shown that, within a Gaussian approximation the predictive distribution
is again Gaussian with mean and variance

m(μx∗ , Σx∗) = Ex∗ [μ(x∗)] (4)
v(μx∗ , Σx∗) = Ex∗ [σ2(x∗)] + Ex∗ [μ(x∗)2] − (Ex∗ [μ(x∗)])2 (5)

The more detailed derivation can be found in the previous chapter of this
book [4]. Equations (4) and (5) can be applied to calculation of multi-step ahead
prediction with propagation of uncertainty.

Gaussian processes can, like neural networks, be used to model static nonlin-
earities and can therefore be used for modelling of dynamic systems if delayed
input and output signals are used as regressors. In such cases an autoregressive
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model is considered, such that the current output depends on previous estimated
outputs, as well as on previous control inputs.

x(k) = [ŷ(k − 1), ŷ(k − 2), . . . , ŷ(k − L), u(k − 1),
u(k − 2), . . . , u(k − L)]T

ŷ(k) = f(x(k)) + ε (6)

Where k denotes consecutive number of data sample. Let x denote the state
vector composed of the previous estimated outputs ŷ and inputs u up to a given
lag L and ε is white noise.

Iterative multi-step ahead prediction is done, as described in the previous
chapter [4], by feeding back the predictive mean, as well as the predictive variance
at each time-step, thus taking the uncertainty attached to each intermediate
prediction into account. The Gaussian process model now not only describes the
dynamic characteristics of the non-linear system, but at the same time provides
information about the confidence in the predictions. The Gaussian process can
highlight areas of the input space where prediction quality is poor, due to the
lack of data, by indicating the higher variance around the predicted mean.

It is worthwhile noting that the derivatives of means and variances can be
calculated in straightforward manner. For more details see [21].

3 Nonlinear Model Predictive Control

Nonlinear model predictive control as it was applied with the Gaussian process
model can be in general described with a block diagram, as depicted in Fig.
1. The model used is fixed, identified off-line, which means that used control
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Fig. 1. Block diagram of model predictive control system

algorithm is not an adaptive one. The structure of the entire control loop is
therefore less complex than in the case where the model changes with time. The
following items describe the basic idea of predictive control:
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– Prediction of the system output signal y(k+j) is calculated for each discrete
sample k for a large horizon in future (j = N1, . . . , N2). Predictions are de-
noted as ŷ(k + j|k) and represent j-step ahead prediction, while N1 and N2

determine lower and upper bound of prediction horizon. Lower and upper
bound of output signal prediction horizon determine coincidence horizon,
within which a match between output and reference signal is expected. Out-
put signal prediction is calculated from process model. Predictions are de-
pendent also on the control scenario in the future u(k+j|k), j = 0, . . . , Nu−1,
which is intended to be applied from a moment k onwards.

– The reference trajectory is determined r(k + j|k), j = N1, . . . , N2, which
determines reference process response from present value y(k) to the setpoint
trajectory w(k).

– The vector of future control signals U(k) containing u(k + j|k), j = 0, . . . ,
Nu − 1 is calculated by minimization of cost function (also called objective
function) such that predicted error between r(k + j|k) and ŷ(k + j|k), j =
N1, . . . , N2 is minimal. Structuring of future control samples can be used in
some approaches.

– Only the first element u(k|k) of the optimal control signal vector u(k +
j|k), j = 0, . . . , Nu − 1 is applied.

In the next sample a new measured output sample is available and the entire
procedure is repeated. This procedure is called a receding horizon strategy.

The control objective is to be achieved by minimization of the cost func-
tion. The cost function penalizes deviations of the predicted controlled outputs
ŷ(k + j|k) from a reference trajectory r(k + j|k). This reference trajectory may
depend on measurements made up to time k. Its initial point may be the output
measurement y(k), but also a fixed set-point, or some predetermined trajec-
tory. The minimization of cost function, in which future control signal (U(k)) is
calculated, can be subject to various constraints (e.g. input, state, rates, etc).

The process model for calculation of predicted outputs is in our case a Gaus-
sian process model, which provides not only the mean value ŷ(k + j|k) but also
the corresponding variance.

There are many alternative ways of how NMPC with Gaussian process models
can be realized.

Cost function. The cost function used (11) is just one of many possible ones.
It is well known that selection of the cost function has a major impact on
the amount of computation.

Optimization problem for ΔΔΔU(k) instead of U(k). This is not just a
change of formalism, but also enables other forms of MPC. One possibil-
ity is a DMC controller with nonlinear model, e.g. [8] - a frequently used
principle, that together with appropriate cost function enables problem rep-
resentation as a least squares problem that can be solved in one iteration in
which an explicit solution is found. This is, as in the case with other special
case simplifications, not a general case solution.

Process model. The process model can be determined off-line and fixed for the
time of operation or determined on-line during the operation of controller
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[16]. However, the problem of increasing covariance matrix dimension with
incoming data has to be dealt with. Safety related issues also need to be
considered thoroughly in the case of adaptive version application.

Soft constraints. Using constraint optimization algorithms is very demanding
for computation and soft constrains, namely weights on constrained variables
in cost function, can be used to decrease the amount of computation. More
on this topic can be found in [9,24].

Linear MPC. It is worth to remark that even though this is a constrained
nonlinear MPC problem it can be used in its specialized form as a robust
linear MPC.

There are several issues of interest for applied NMPC. Let us mention some
of them.

Efficient numerical solution. Nonlinear programming optimization algo-
rithm is very demanding for computation. Various approximations and other
approaches (e.g. approximation of explicit solution) exist to decrease com-
putational load, mainly for special cases, like linear process models or special
cost functions.
One possibility to decrease the computational load necessary for optimiza-
tion is with the incorporation of prediction derivation (and variance) into
optimization algorithm. When using Gaussian process models the predic-
tion and variance derivation can be calculated in a straightforward manner.

Stability. At present no stability conditions have been derived for Gaussian
processes as a representative of probabilistic non-parametric models.

Robustness. This issue has a major impact on the applicability of the algo-
rithm in practice. The fact that the process model contains the information
about the model confidence enables controller to optimize the manipulative
variable to “avoid” regions where the confidence in the model is not high
enough. This possibility itself makes the controller robust if applied prop-
erly. MPC robustness in the case of other algorithms is usually not some
specially built feature of the MPC algorithms, but was more an issue of
assessment for particular MPC algorithms.

4 Example

4.1 pH Process

A simplified schematic diagram of the pH neutralization process taken from [7]
is given in Fig. 2. The process consists of an acid stream (Q1), buffer stream
(Q2) and base stream (Q3) that are mixed in a tank T1. Prior to mixing, the
acid stream enters the tank T2 which introduces additional flow dynamics. The
acid and base flow rates are controlled with flow control valves, while the buffer
flow rate is controlled manually with a rotameter. The effluent pH (pH) is the
measured variable. Since the pH probe is located downstream from the tank T1,
a time delay (Td) is introduced in the pH measurement. In this study, the pH
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Fig. 2. The pH neutralization system scheme

is controlled by manipulating the base flow rate. A more detailed description
of the process with mathematical model and necessary parameters is presented
in [7].

The dynamic model of the pH neutralization system shown in Fig. 2 is de-
rived using the conservation equations and equilibrium relations. The model also
includes valve and transmitter dynamics as well as hydraulic relationships for
the tank outlet flows. Modelling assumptions include perfect mixing, constant
density, and complete solubility of the ions involved. The simulation model of
pH process, which was used for necessary data generation contains therefore var-
ious nonlinear elements as well as implicitly calculated function which is value
of highly nonlinear titration curve.

4.2 Model Identification

Based on responses and iterative cut-and-try procedure a sampling time of 25
seconds was selected. The sampling time was so large that the dead-time men-
tioned in the previous section disappeared.

The chosen identification signal of 400 samples was generated from a uniform
random distribution and rate of 50 seconds.

Obtained hyperparameters of the third order Gaussian process model were:

ΘΘΘ = [w1, w2, w3, w4, w5, w6, v0, v1]
= [−6.0505,−2.0823,−0.4785,−5.3388,−3.4206,−8.7080,

0.8754,−5.4164] (7)

where hyperparameters from w1 to w3 denote a weight for each output regressor,
from w4 to w6 denote a weight for each input regressor, v0 is estimated noise
variance and v1 is the estimate of the vertical scale of variation.
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Fig. 3. Response of Gaussian process model on excitation signal used for iden-
tification

The region in which the model was obtained can be seen from Fig. 3. A
very good fit can be observed for the identification input signal which was used
for optimization. However, the obtained model contains information mainly in
the region below pH=7 as can be concluded from the response in Fig. 3. The
validation signal was from the same region as the identification signal. The iden-
tification and validation signal were obtained with generator of random noise
with different initial values. Response of the model to validation signal and com-
parison with process response is depicted in Fig. 4. Fitting of the response for
validation signal:

– average absolute test error
AE = 0.0691 (8)

– average squared test error
SE = 0.0109 (9)

– log density error
LD = −0.7130 (10)

After model validation the model was utilized for control design. See [11] for
more issues on pH process modelling with Gaussian process models.

4.3 Control

A moving-horizon minimization problem of the special form [13]

min
U(k)

[r(k + P ) − ŷ(k + P )]2 (11)
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Fig. 4. Response of Gaussian process model on excitation signal used for vali-
dation

subject to:

var ŷ(k + P ) ≤ kv (12)
| U(k) | ≤ kih (13)
| U̇(k) | ≤ kir (14)
| x(k) | ≤ ksh (15)
| ẋ(k) | ≤ ksr (16)

is used in our case, where U(k) = [u(k) . . . u(k + P )] is input signal, P is the
coincidence point (the point where a match between output and reference value
is expected) and inequalities from (12) to (16) represent constraint on output
variance kv, input hard constraint kih, input rate constraint kir, state hard
constraint ksh and state rate constraint ksr respectively. The process model is a
Gaussian process.

The optimization algorithm, which is constrained nonlinear programming, is
solved at each sample time over a prediction horizon of length P , for a series of
moves which equals to control horizon. In our case control horizon was chosen
to be one and to demonstrate constraint on variance the rest of constraints was
not taken into the account. Nevertheless, all this modifications do not change
the generality of solution, but they do affect the numerical solution itself.

The control algorithm described above was tested for the pH process with
simulation. The reference trajectory r is defined so that it approaches the set-
point exponentially from the current output value. The coincidence point was
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chosen to be 8 samples and, as already mentioned, the control horizon is one
sample. The results of unconstrained control are given in Figs. 5 and 6.
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Fig. 5. Non-constrained case: response of Gaussian process model based control
(upper figure) and control signal (bottom figure)
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Fig. 6. Non-constrained case: standard deviation corresponding to the previous
figure

It can be seen from different set-point responses that the model differs from
the process in different regions. It can be clearly seen that the variance increases
as output signal approaches regions which were not populated with enough iden-
tification data. It should be noted however that variances are sum of variances
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that correspond to information about regions where there are varying degrees of
confidence in the model accuracy, depending upon local density of available iden-
tification data and of output response variances. When variances increase too
much, one design option is that the response can be optimized with constrained
control. Results can be seen in Figs. 7 and 8.
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Fig. 7. Constrained case (σmax = 0.25): response of Gaussian process model
based control (upper figure) and control signal (bottom figure)
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Fig. 8. Constrained case (σmax = 0.25): standard deviation corresponding to
the previous figure

It can be seen from Figs. 7 and 8 that the closed-loop system response now
avoids the region with large variance, at the cost of an increase in steady-state
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error. This could be interpreted also as trade-off between designed performance
and safety.

A possible alternative selection of cost function that avoids constrained op-
timization and is therefore computationally less demanding would be as follows.

min
U(k)

E{[r(k + P ) − ŷ(k + P )]2} (17)

Using the fact that var{ŷ} = E{ŷ2} − E{ŷ}2, the cost function can be written
as:

min
U(k)

[r(k + P ) − E{ŷ(k + P )}]2 + var{ŷ(k + P )} (18)

Results with cost function (18) are given in Figs. 9 and 10. It can be again
observed from Figs. 9 and 10 that the closed-loop system response avoids the
region with large variance, at the cost of increased steady-state error, as was
the case with constrained control, but with less computational burden than the
constrained control case. The control strategy with cost function (18) is “to
avoid” going into regions with higher variance. The term “higher variance” does
not specify any specific value. In the case that controller does not seem to be
cautious enough, a pragmatic calibration option is that the variance term can
be weighted to enable shaping of the closed-loop response according to variance
information:
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Fig. 9. Response of Gaussian process model based control with “soft constraints”
(upper figure) and control signal (bottom figure)
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Fig. 10. Standard deviation corresponding to the previous figure

min
U(k)

[r(k + P ) − E{ŷ(k + P )}]2 + λvar{ŷ(k + P )} (19)

NMPC with the second cost function with weight on variance λ = 2, using
unconstrained optimization, gives the results depicted in Figs. 11 and 12, show-
ing a reduction in the standard deviation of the predictions of the closed-loop
response, compared to Fig. 10, and minor changes in the mean behaviour.
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Fig. 11. Response of Gaussian process model based control with “soft con-
straints” (upper figure) and control signal (bottom figure)
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Fig. 12. Standard deviation corresponding to the previous figure

Beside the difference in the optimization algorithm, the presented options
give also a design choice on how “safe” the control algorithm is. In the case
when it is very undesirable to go into “unknown” regions the constrained version
might be the better option.

5 Conclusions

The principle of Model Predictive Control based on a Gaussian process model
was presented and illustrated with a pH process control example. In the example,
a constraint on model variance was included. This can be complimented also with
other constraints when necessary. The use of Gaussian process models makes it
possible to include information about the confidence in the model depending on
the region.

It was indicated that using Gaussian process models offers an attractive pos-
sibility for control design that results in a controller with a higher level of ro-
bustness due to information contained in the model. It is necessary to stress that
the presented control strategy represents only a feasibility test for Gaussian pro-
cess application for model predictive control and additional efforts are necessary
before this approach will be applicable in engineering practice.

A practical challenge dealing with application of Gaussian process models in
control applications is related to the computational burden associated with the
number of training data (although recent work in [21] has shown how derivative
observations can improve the situation in control contexts). Another interesting
issue that is under investigation is disturbance rejection. Despite these current
challenges, the Gaussian process approach has a number of exciting advantages.
The simple model structure, the reduced sensitivity to the choice of model struc-
ture and the uncertainty information one obtains on the predictions are attrac-
tions of the Gaussian process approach. The principle shown is quite general and
several modifications that accelerate computation can be used and are planned
to be derived in the future.
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Control of Yaw Rate and Sideslip in 4-Wheel

Steering Cars with Actuator Constraints�
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Abstract. In this paper we present a new steering controller for cars
equipped with 4-wheel steer-by-wire. The controller commands the front
and rear steering angles with the objective of tracking reference yaw rate
and sideslip signals corresponding to the desired vehicle handling be-
haviour. The structure of the controller is based on a simplified model
of the lateral dynamics of 4-wheel steering cars. We show that the pro-
posed structure facilitates the design of a robust steering controller valid
for varying vehicle speed. The controller, which has been designed using
classical techniques according to the Individual Channel Design (ICD)
methodology, incorporates an anti-windup scheme to mitigate the effects
of the saturation of the rear steering actuators. We analyse the robust
stability of the resulting non-linear control system and present simula-
tion results illustrating the performance of the controller on a detailed
non-linear vehicle model.

1 Introduction

The concept of generic prototype vehicles has emerged as a promising solution to
an outstanding challenge in the development of ride and handling characteristics
for advanced passenger cars: the bridging of the gap between numerical simu-
lations based on a vehicle model –a virtual prototype– and experiments on a
proof-of-concept prototype vehicle. A generic prototype vehicle would be equip-
ped with advanced computer-controlled actuators enabling it to modify its ride
and handling characteristics. Examples of such advanced actuators are four and
rear steer-by-wire, brake-by-wire and active suspensions. An integrated chassis
controller would command those actuators to track a set of reference signals
corresponding to a desired ride and handling behaviour. Currently, moving-base
driving simulators are used to emulate the ride and handling behaviour of virtual
prototypes prior to building real ones. However, the achievable accelerations of
such simulators severely constrain their ability to realistically recreate the full
range of vehicle motion. Generic prototype vehicles could allow for the realistic
recreation of the ride and handling characteristics of virtual prototypes, thereby
enabling engineers to experience and evaluate their behaviour prior to making
the decision of building expensive proof-of-concept prototypes.
� The authors thank Jens Kalkkuhl of DaimlerChrysler Research and Technology for
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In this paper, we present a steering controller that enables cars equipped with
4-wheel steer-by-wire to display predefined handling characteristics. This steer-
ing controller is intended as a first step towards an integrated chassis controller
for a generic prototype vehicle. The proposed steering controller commands front
and rear steering angles with the objective of tracking reference yaw rate and
sideslip angle signals obtained online from the driver’s inputs to steering wheel
and pedals. These reference signals describe the lateral dynamic response to
those inputs of a virtual prototype with the desired handling characteristics. In
addition, the steering controller automatically rejects disturbances in sideslip
and yaw rate, such as those caused by μ-split braking manoeuvres or lateral
wind gusts. We assume that the controlled output variables, i.e. yaw rate and
sideslip angle, are measured (in practice, the latter may typically be estimated
using, for example, a Kalman filter).

A substantial body of research on the control of 4-wheel steering cars already
exists and a variety of control structures have been proposed in the literature.
Most of these structures rely on the use of gain-scheduled feedforward control to
command the rear steering angle [1]. In such control structures, some of which
have been implemented on production passenger cars, the rear steering angle is
computed as a function of the front steering angle that results from the driver’s
input to the steering wheel. The different control laws depend on the performance
objectives, which are usually related to the improvement of the manoeuvrability
and cornering stability of the vehicle. The work described in [2] proposes to
combine feedforward and feedback control to command the rear steering angle,
while the front steering angle remains under direct control of the driver. The
control objective is to follow a predefined model of the vehicle dynamics. In order
to achieve a satisfactory degree of robustness the feedback controller is designed
using μ synthesis. An example of an steering controller specifically designed
for cars equipped with 4-wheel steer-by-wire is presented in [3]. The controller
structure is based on the cross-feedback of the measured yaw rate to the front
steering angle. This structure decouples the control of the lateral acceleration
from the control of the yaw rate. Two outer feedback loops are used so that front
wheel steering is used to track the desired lateral acceleration and rear wheel
steering is used to regulate the damping of the resulting yaw dynamics.

The structure of the steering controller presented in this paper is based on
a simplified linear model of the lateral dynamics of 4-wheel steering cars at
constant speed. The main elements of the controller structure are a linear in-
put transformation and a speed-dependent inner feedback loop. When applied
to the simplified model mentioned above, this structure partially decouples the
sideslip and yaw rate responses to the new controllable inputs, with the yaw rate
response being speed-invariant. Thus, the proposed structure acts as an implicit
gain scheduling on the vehicle speed. The control design is based on a more
accurate model of the vehicle lateral dynamics. This model includes the steering
actuator dynamics as well as the communication time delay between controller
and actuators. When applied to this model, the proposed controller structure
results in approximate partial decoupling of the sideslip and yaw rate responses,
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with a nearly speed-invariant yaw rate response. The resulting 2-by-2 multivari-
able control design problem is restated as two single-input, single-output (SISO)
control design problems according to the ICD paradigm. Assuming certain band-
width restrictions, individual linear controllers for the resulting sideslip and yaw
rate channels are designed using classical techniques. The resulting steering con-
troller satisfies robustness and disturbance rejection requirements. The controller
is augmented with a feedforward element to improve the response to reference
inputs and with an anti-windup scheme to mitigate the effects of the saturation
of the rear steering actuators. The resulting non-linear steering controller is valid
for varying vehicle speed and shows excellent performance robustness to model
uncertainty.

Since the proposed steering controller is intended as the foundation for an
integrated chassis controller, the main design criteria are transparency, simplic-
ity and modularity. We have adopted the ICD methodology in an attempt to
satisfy these criteria. ICD exploits the full potential of diagonal control within
a classical Nyquist-Bode framework, opening the way for modular and trans-
parent design based on individual SISO channels that arise naturally from the
control specifications. In addition, we deal with the issue, often overlooked in
the literature, of ensuring that the steering controller remains robustly stable
and performs satisfactorily in the event of rear steering actuator saturation.

In this paper, we focus on describing the controller structure and analysing its
robust stability considering the possible saturation of the rear steering actuators.
A detailed description of the control design process can be found in [4].

The remainder of this paper is structured as follows. First, we describe the
simplified model of the lateral dynamics of 4-wheel steering cars used to define
the structure of the proposed steering controller. Based on this model, we de-
rive the controller structure and state the resulting multivariable control design
problem. Subsequently, we introduce the ICD methodology in the context of the
problem at hand. Next, we apply the proposed controller structure to a more
accurate model of the lateral dynamics of 4-wheel steering cars and restate our
multivariable control design problem in terms of individual channels according
to ICD. Then, we briefly explain the design process. Subsequently, we analyse
the robust stability of the resulting non-linear control system using some new
results from the theory of common quadratic Lyapunov functions. Finally, sim-
ulation results obtained with a detailed non-linear model of a Mercedes S-Class
are given to illustrate the performance and robustness of the steering controller.

2 Simplified Linear Model of the Lateral Dynamics of
4-Wheel Steering Cars

Throughout this paper, it is assumed that the essential features of the lateral
dynamics of the car can be described using the single-track model [3]. In the
single-track model, the two wheels at each axle are lumped into a single imagi-
nary wheel located at the centre of the respective axle. The resulting front and
rear wheels are interconnected by a one-dimensional rigid element with the car’s
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mass and moment of inertia around the vertical axis. The forces acting on each
wheel of the single-track model correspond to the combined forces acting on the
left and right wheel at the corresponding axle. Only the lateral motion of the car
is considered when using the single-track model. It is assumed that the centre
of gravity of the single-track model is at road level so that the roll, pitch and
heave dynamics can be neglected. Additionally, it is assumed that the longitu-
dinal speed is constant. Figure 1 depicts the single-track model indicating the
main elements necessary for the analysis of its lateral dynamics.
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Fig. 1. Single-track model of a 4-wheel steering car

In Fig. 1, the set of reference axes CG-xy, with origin at the centre of gravity
CG, is fixed to the vehicle and O-XY is an inertial reference frame; v is the
velocity of the vehicle with respect to O-XY; vf and vr are the velocities at the
front and rear axle, respectively, with respect to O-XY; ψ is the yaw angle and
β is the sideslip angle. It is assumed that the front (respectively, rear) steer-
ing angle of the single-track model, δf (respectively, δr) in Fig. 1, corresponds
to the steering angle at the two front (respectively, rear) wheels. Since we are
not concerned with the longitudinal motion of the single-track model, we only
consider tyre-road interaction forces perpendicular to the wheel plane, i.e. cor-
nering forces. The force Sf (respectively, Sr) in Fig. 1 represents the combined
cornering forces acting on the front (respectively, rear) axle.

To derive the equations governing the linearised lateral dynamics of the
single-track model, we assume that the front and rear steering angles are small,
which in turn results in the angles β, βf , αf , βr and αr in Fig. 1 also being
small. Under this assumption, the application of the equations of motion of a
rigid body to the single-track model results in

β̇ = ψ̇ − Sf + Sr

mvx
(1)
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ψ̈ =
Sf lf − Srlr

Izz
(2)

where m is the mass of the vehicle, Izz is its moment of inertia with respect to
the vertical axis, lf (respectively, lr) is the distance from the centre of gravity to
the front (respectively, rear) axle and vx is the projection of the velocity vector
along the CG − x axis, i.e. the vehicle longitudinal velocity, which we hereafter
refer to as the vehicle speed.

For small αf and αr, Sf and Sr can be approximated by the following equa-
tions [5]:

Sf = Kfαf (3)
Sr = Krαr (4)

Considering the kinematics of the single-track model as a rigid body, the angles
αf and αr are calculated as follows:

αf = δf + β − lf ψ̇

vx
(5)

αr = δr + β +
lrψ̇

vx
(6)

The constant Kf in (3) is obtained by adequately reducing the combined cor-
nering stiffness of the two front tyres to take into account the caster effect.
Conventional steering systems are designed so that the tyre-road contact patch
trails behind the steering axis, resulting in a self-aligning torque on the front axle
known as the caster effect. We have to consider the caster effect as it is assumed
that the front steer-by-wire function is integrated with a conventional steering
system. This construction allows for the introduction of a safety management
system that reverts to normal steering in case of failure of the steer-by-wire
function. The constant Kr in (4) is simply the combined cornering stiffness of
the rear tyres. No caster effect is generated at the rear axle since it is assumed
that each rear wheel is steered individually by an electro-hydraulic actuator.

Equations (1), (2), (3), (4), (5) and (6) can be rearranged into the state-space
representation of a linear time-invariant system with two inputs (δf and δr) and
two outputs (β and ψ̇). The resulting state-space representation is given below:

ẋ = Ax + Bu (7)
y = Cx + Du (8)

where

u =
[

δf

δr

]
, y = x =

[
β

ψ̇

]
, (9)

A =

⎡⎢⎢⎢⎢⎣
−Kf + Kr

mvx

Kf lf − Krlr
mv2

x

+ 1

Kf lf − Krlr
Izz

−Kf l2f + Krl
2
r

Izzvx

⎤⎥⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎣
− Kf

mvx
− Kr

mvx

Kf lf
Izz

−Krlr
Izz

⎤⎥⎥⎥⎦ , (10)
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C =
[

1 0
0 1

]
and D =

[
0 0
0 0

]
(11)

The matrix transfer function of the system with the state-representation (7)-(8)
is given by

G(s) = C(sI − A)−1B + D =
[
g11(s) g12(s)
g21(s) g22(s)

]
(12)

The linear time-invariant system introduced above describes the lateral dynamics
of the single-track model around the trajectory given by zero sideslip, zero yaw
rate, zero steering angles and constant vehicle speed.

3 Structure of the Steering Controller

The steering controller is to be designed to track reference signals corresponding
to normal driving situations. In such situations, the tyres are far from their
adhesion limit and the cornering forces behave approximately in a linear fashion
according to 3 and 4. The transfer function G(s) in 12 can then be used to model
the car lateral dynamics and the design of a steering controller for constant
vehicle speed can be tackled by solving the classical 2-by-2 multivariable control
design problem depicted in Fig. 2.

G(s)
+ + +

+

+

+

-

-

dψ

dβ
δ f

δ r

β ref

ψ ref

β

ψ
K(s)

Fig. 2. Design of a linear multivariable steering controller for fixed vehicle speed

A linear controller K(s) designed based on G(s) would only be valid for the
corresponding vehicle speed. In principle, a set of local controllers corresponding
to different vehicle speeds could be combined using gain-scheduling techniques
into a non-linear controller valid for varying vehicle speed. In order to simplify
the design process, we take a different approach and state the control design
problem in terms of the virtual plant that results from pre-compensating G(s)
with a constant matrix gain, i.e. linearly transforming the inputs, and then
introducing a speed-dependent matrix gain in a feedback path around the pre-
compensated plant. By modifying G(s) in this manner and basing the design on
the resulting virtual plant, we impose a structure that facilitates the design of a
steering controller valid for varying vehicle speed. This is due to the fact that the
virtual plant to be controlled, which we denote as G̃(s), yields a speed-invariant
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yaw rate response. The derivation of the controller structure is explained in detail
below.

3.1 Linear Input Transformation

Suppose that the inputs to the plant G(s) are the result of the following linear
transformation: [

δf

δr

]
= E

[
Δ1

Δ2

]
(13)

where E ∈ R2×2. Considering 3.1, the resulting dynamical equation for the
single-track model with respect to the new inputs is:

ẋ = Ax + BEΔ = Ax + B1Δ, with Δ =
[
Δ1

Δ2

]
(14)

If we choose

E = − 1
Kr

Kf

(
1 + lr

lf

)
⎡⎢⎢⎣

Krlr
Kf lf

−Kr

Kf

−1 −1

⎤⎥⎥⎦ (15)

the resulting matrix B1 is diagonal:

B1 =

⎡⎢⎢⎢⎣
− Kf

mvx
0

0
KfKf

Izz

⎤⎥⎥⎥⎦ (16)

The chosen matrix E correspond to the inputs:

Δ1 = δf +
Kr

Kf
δr (17)

Δ2 = δf − Krlr
Kf lf

δr (18)

A physical interpretation of these new inputs is in terms of a mode given by
Δ1, which excites the sideslip by steering front and rear wheels in the same
direction, and a mode given by Δ2, which excites the yaw rate by steering front
and rear wheels in opposite directions. It can be argued that by using Δ1 and Δ2

and as control actions the 4-wheel steering vehicle is controlled in a ”natural”
way, separating the dynamics into their linear and rotational components. The
resulting dynamical equation of the yaw rate with respect to the new inputs is:

Izz

Kf lf
ψ̈ +

Kf l2f + Krl
2
r

Kf lfvx
ψ̇ = Δ2 +

(
1 − Krlr

Kf lf

)
β (19)

Taking Laplace transforms of both sides in 3.1 and rearranging results in:

ψ̇(s) =
K1

s + p(vx)
Δ2(s) +

K1K2

s + p(vx)
β(s) (20)
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where

K1 =
Kf lf
Izz

, K2 = 1 − Krlr
Kf lf

, and p(vx) =
Kf l2f + Krl

2
r

Izzvx
(21)

The yaw rate dynamics are characterised by a speed-varying first order pole at
frequency p(vx) and are coupled with the sideslip dynamics.

3.2 Speed-Dependent Feedback Element

We introduce a feedback element of the form:

Δ = Δ̃ − Fy (22)

which results in the new vector of controllable inputs Δ̃ =
[

Δ̃1

Δ̃2

]
. The matrix

F ∈ R2×2 is given by

F =
[

0 0
K2 Kv(vx)

]
(23)

with K2 from (21) and Kv(vx) defined as

Kv(vx) = K0 − p(vx)
K1

(24)

with K1 from (21) and K0 an arbitrary constant. Since y = x, the state-space
equation can be written as follows:

ẋ = Ax + B1(Δ̃ − Fx) = (A − B1F )x + B1Δ̃ (25)

where

A − B1F =

⎡⎢⎢⎢⎣
−Kf + Kr

mvx

Kf lf − Krlr
mv2

x

+ 1

0 −K0Kf lf
Izz

⎤⎥⎥⎥⎦ (26)

The corresponding matrix transfer function with respect to the new controllable
inputs is upper-triangular:

G̃(s) = C(sI − Ã)−1B1 + D =
[

g̃11(s) g̃12(s)
0 g̃22(s)

]
(27)

The resulting dynamical equation of the yaw rate with respect to the new con-
trollable inputs Δ̃1 and Δ̃2 is speed-invariant, taking the form:

ψ̈ = −K0K1ψ̇ + K1Δ̃2 (28)

We choose K0 to be:

K0 =
Kf l2f + Krl

2
r

Kf lfvx0
(29)
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with vx0 an arbitrary fixed vehicle speed. Then, taking Laplace transforms of
both sides of 3.2 results in:

ψ̇(s) =
K1

s + p(vx0)
Δ̃2 (30)

The introduction of the feedback element described above results in the yaw rate
dynamics depending only on one of the two inputs to be controlled, Δ̃2. Besides,
the yaw rate response to it is speed-invariant and characterised by a fixed first
order pole at frequency p(vx0).

3.3 Control Design Problem with Diagonal Controller

Considering the above, we base the control design on the virtual plant G̃(s).
Since we intend to apply the ICD design methodology , we assume that G̃(s) is
to be controlled by a diagonal controller. Consequently, the multivariable control
problem in Fig. 2 can be restated as shown in Fig. 3, which depicts the proposed
controller structure.

G(s)+

+ +

+
+

+

-

-

dψ

d β

δ f

δ r

β ref

ψ ref

β

ψ

~
( )k s1

~
( )k s2

E

K2

Kv(vx)
v x

~
( )G s~

Δ1

~
Δ 2

+ +

--

Fig. 3. Multivariable control design problem in terms of G̃(s)

4 Individual Channel Decomposition According to ICD

ICD [6] is a frequency-domain approach to the analysis and design of linear mul-
tivariable control systems that provides a solid framework for the application
of concepts and techniques from classical linear control, such as Nyquist and
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Bode plots and gain and phase margins, to multivariable control design prob-
lems. Within the ICD framework, an m-input, m-output feedback system with
a diagonal controller is decomposed, without loss of information, into m equiv-
alents SISO feedback control systems called channels. Each individual channel
originates from the pairing of a reference input to its corresponding output.
Consequently, a channel has its own performance specifications expressed in
terms of its response to the corresponding reference input. ICD is very much an
application-oriented approach capable of exploring the potential and limitations
of diagonal control for a given system. According to the ICD methodology, the
multivariable control problem in Fig. 3 can be decomposed into the two channels
shown in Fig. 4.
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Fig. 4. Multivariable control design problem in terms of G̃(s)

The channel decomposition in Fig. 4 is based on the following functions:

γ̃(s) =
g̃12(s)g̃21(s)
g̃11(s)g̃22(s)

(31)

h̃1(s) =
k̃1(s)g̃11(s)

1 + k̃1(s)g̃11(s)
, h̃2(s) =

k̃2(s)g̃22(s)
1 + k̃2(s)g̃22(s)

(32)

The closed-loop response of the channels to the reference inputs and βref (s) and
ψ̇ref (s) are given by:

β(s) = t̃11(s)βref (s) + t̃12(s)ψ̇ref (s) (33)
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ψ̇(s) = t̃21(s)βref (s) + t̃22(s)ψ̇ref (s) (34)

where

t̃ii(s) =
c̃i(s)

1 + c̃i(s)
, i = 1, 2 (35)

t̃ij(s) =
g̃ij(s)h̃j(s)

g̃jj(s)
(1 + c̃i(s))−1, i = 1, 2; j = 1, 2; i �= j (36)

The term c̃i(s) in 36 and 36 is the open loop transmittance of channel i, which
is defined as

c̃i(s) = k̃i(s)g̃ii(s)(1 − γ̃(s)h̃j(s)), i = 1, 2; j = 1, 2; i �= j (37)

The closed-loop responses of the channels to the disturbance inputs dβ(s) and
dψ̇(s) are as follows:

β(s) = s̃11(s)βref (s) + s̃12(s)ψ̇ref (s) (38)

ψ̇(s) = s̃21(s)βref (s) + s̃22(s)ψ̇ref (s) (39)

where

s̃ii(s) =
1

1 + c̃i(s)
, i = 1, 2 (40)

s̃ij(s) = −t̃ij(s) (41)

Robust stability of the multivariable control system is equivalent to the robust
stability of the channels providing that the Nyquist plots of the two multivariable
structure functions γ̃(s)h̃j(s) for j = 1, 2 remain far from the (1,0) point.

5 Control Design for a More Accurate Model of the
Lateral Dynamics of 4-Wheel Steering Cars

We now consider a more accurate linear model of the car lateral dynamics. We
base the design of the linear controllers k̃1 and k̃2 on the virtual plant G̃(s)
that results from applying the proposed controller structure (see Fig. 3) to the
matrix transfer function of this new model. While still relying on the single-track
approximation, we augment the simple model described by (7)-(8) to include the
following:

1. The tyre force dynamics and caster effect at the front axle modelled as:

Ṡf = a

(
C

(
δf − 2Sf

ns

CL
+ β − lf ψ̇

vx

)
− Sf

)
(42)

where where Sf is the cornering force generated at the front axle, a is a
constant that depends on the vehicle speed, C is the nominal tyre corner-
ing stiffness, δf is the output of the front steering actuators, ns is a caster
parameter and CL is an elasticity constant of the steering system.
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2. Tyre force dynamics at the rear axle modelled as:

Ṡr = a (Cαr − Sr) (43)

where Sr is the cornering force generated at the rear axle.
3. Front and rear steering actuators modelled as second order systems:[

δ̇f

δ̈f

]
=
[
Af

11 Af
12

Af
21 Af

21

] [
δf

δ̇f

]
+
[

bf
1

bf
2

]
δi
f (44)

[
δ̇r

δ̈r

]
=
[
Ar

11 Ar
12

Ar
21 Ar

21

] [
δr

δ̇r

]
+
[
br
1

br
2

]
δi
r (45)

where δi
f and δi

r are the input to the front and rear steering actuators,
respectively, and δf and δr are the output of the front and rear steering
actuators, respectively.

4. Communication time delay of 20 ms between controller and actuators mod-
elled using Padè approximation.

5.1 Control Specifications

The main requirements for the controlled 4-wheel steering car are:

1. Tracking sideslip and yaw rate reference signals with the highest possible
closed-loop bandwidth. These reference signals are obtained in real-time from
the driver’s inputs to the steering wheel and pedals.

2. Rejecting any disturbances in sideslip and yaw rate with the highest possible
bandwidth to avoid interference with the driver’s reactions.

3. Maintaining tracking and disturbance rejection performance for vehicle
speeds between 10 and 60 m/s and for driving situations involving speed
changes, such as acceleration and braking.

4. Robustness with respect to changes in the car parameters, in particular with
respect to changes in the tyre stiffness under different road conditions.

5. Satisfactory performance in the event of the saturation of the rear actuators.

5.2 Control Design

We have designed the steering controller considering the more accurate model
of the car lateral dynamics introduced above. The model parameters are those
corresponding to a Mercedes S Class. Details on the design of the controllers
k̃1(s) and k̃2(s) can be found in [4]. Here we provide a summary of the design
process. Before actually designing k̃1 and k̃2, two tasks have to be carried out:

1. In order to improve the cross-channel disturbance rejection in the sideslip
channel (disturbances from the reference yaw rate to the sideslip response),



Control of Yaw Rate and Sideslip in 4-Wheel Steering Cars 213

a low-pass filter is added to the cross-feedback term. This results in a K2 in
Fig’ 3 taking the form:

K2(s) =
(

1 − Krlr
Kf lf

)
1

s

s0
+ 1

(46)

where the value of the pole frequency, s0, is to be selected.
2. The value of vx0 in Kv(vx) has to be chosen. The choice of vx0 is related to

the robustness of the system.

Once s0 and vx0 have been selected, we can write the transfer function matrix
G̃(s) for any given vehicle speed. With the more accurate model of the car
lateral dynamics introduced above, the resulting G̃(s) is approximately upper-
triangular and the yaw rate response can be considered speed-invariant up to
a certain frequency. By imposing a bandwidth separation of approximately 7
rad/s between the two channels, the controllers k̃1(s) and k̃2(s) can be designed
based on g̃11(s) and g̃22(s), respectively, using classical Bode plot-based SISO
techniques. Simple controllers of the form

k̃1(s) = −K1I

s
, Integrator (47)

k̃2(s) = K2p +
K2I

s
, PI controller (48)

(49)

achieve an excellent degree of robustness and satisfactory performance regarding
the rejection of cross-channel and external disturbances. These controllers result
in a low bandwidth sideslip channel (approx 3 rad/s) and a high bandwidth yaw
rate channel (approx 10 rad/s). The speed-dependent feedback term Kv(vx) acts
as an implicit gain scheduling scheme that combines linear controllers parame-
terised by the vehicle speed into a non-linear controller valid for varying speed.

Having designed k̃1(s) and k̃2(s) to achieve robustness and disturbance re-
jection performance, we then add a linear feedforward element to the steering
controller to improve its tracking performance. The feedforward element ade-
quately speeds up and shapes the responses to reference signals.

6 Anti-windup Scheme

The steering controller has been designed without considering the possible satu-
ration of the steering actuators. While the maximum allowable front rear steering
angle (±400) is not likely to be reached in the driving situations in which the
controller will operate, possible rear actuator saturation has to be considered
since the maximum allowable rear steering angle is restricted to only ±50 due
to space constraints. When the rear actuators saturate, the feedback loops are
broken and the system runs in open-loop because the output of the actuators
remain constant independently of the output of the system. Since the steering
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controller performs integrating action, the error continues to be integrated and
the integral terms may become very large (they ”wind up”). This may lead to
large transients, excessive overshoots or even instability. An anti-windup scheme
has been incorporated into the steering controller to mitigate the effects of the
saturation of the rear actuators. The proposed scheme is inspired by conventional
anti-windup methods and works as follows. The rear steering angle signal com-
manded by the controller is subtracted from the average of the measured rear
steering angles. The resulting signal is fed back to the input of the controller
k̃1(s) through a gain KAW . As it will be shown in the simulation results below,
this scheme prevents the integrators in both k̃1(s) and k̃2(s) from winding up
and allows the steering controller to retain full control of the yaw rate. Fig. 5
below shows the full steering controller, including feedforward and anti-windup,
as it would be implemented in a real car.

+
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ψ ref
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Fig. 5. Full steering controller

7 Robust Stability Analysis

In this section, we analyse the robust stability of the control system considering
the possible saturation of the rear steering actuators. In the analysis, we do not
consider the feedforward element of the steering controller, as it does not affect
the stability of the overall control system, and we use the more accurate model
of the car lateral dynamics introduced in Section 5 without the communication
time delay. To study the stability of the resulting feedback control system, we
transform it into an equivalent one whose forward path contains a SISO linear
time-invariant subsystem and whose feedback path contains a saturation nonlin-
earity. This nonlinearity models the constraints on the rear steering actuators.
The equivalent system, which is depicted in Fig. 6, is an example of a Lur’e
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system. Thus, asymptotic stability results developed for Lur’e systems, such as
the Circle Criterion ([7],[8]), can be used in the analysis.

,

x Ax bu

cr c
T x

= +
=δ

+
-

r = 0 u δ r c,

φ

Fig. 6. Equivalent control system for stability analysis: a Lur’e problem

The state space representation of subsystem in the forward path of the feed-
back system in Fig. 6 is given by:

ẋ = Ax + bu (50)
δr,c = cT x (51)

where δr,c is the rear steering angle demanded by the controller and the matrix
A ∈ R11×11 has the following structure

A =
[
A11 A12

A21 A22

]
(52)

where the block matrices A11 ∈ R4×4 , A12 ∈ R4×7,A21 ∈ R7×4 and A22 ∈ R7×7

are given by

A11 =

⎡⎢⎢⎢⎣
0 1 − 2

mvx
− 2

mvx

0 0 2lf
Izz

− 2lr
Izz

aC −aClf
vx

−a(1 + 2Cns

CL
) 0

aC aClr
vx

0 −a

⎤⎥⎥⎥⎦ , A12 =

⎡⎢⎢⎣
0 0 0 0 0 0 0
0 0 0 0 0 0 0

aC 0 0 0 0 0 0
0 0 aC 0 0 0 0

⎤⎥⎥⎦ (53)

A21 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −bf
1E12(K2p + Kv) 0 0

0 −bf
2E12(K2p + Kv) 0 0

0 0 0 0
0 0 0 0

Ks0 0 0 0
−K1I K1IKAW E22(K2p + Kv) 0 0

0 −K2I 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(54)



216 Miguel A. Vilaplana et al.

A22 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Af
11 Af

12 0 0 −bf
1E12 bf

1E11 bf
1E12

Af
21 Af

22 0 0 −bf
2E12 bf

2E11 bf
2E12

0 0 Ar
11 Ar

12 0 0 0
0 0 Ar

21 Ar
22 0 0 0

0 0 0 0 −s0 0 0
0 0 0 0 K1IKAW E22 −K1IKAW E21 −K1IKAW E22

0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(55)

The state vector x and the vectors b and c are given by

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β

ψ̇
Sf

Sr

δf

δ̇f

δr

δ̇r

K2

ũ1

ũ2I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

−br
1

−br
2

0
−K1IKAW

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−E22(K2p + Kv)

0
0
0
0
0
0

−E22

E21

E22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(56)

The steering angles δf and δr in the state vector x are the output of the actuators.
The state ũ1 is the output of the controller k̃1 and the state ũ2I is the output
of the integrator in the controller k̃2.

The saturation nonlinearity φ in the feedback path of the system in Fig. can
be modelled as:

φ(δr,c) = ksat(δr,c)δr,c (57)

with

ksat(δr,c) =

⎧⎪⎪⎨⎪⎪⎩
1 if |δr,c| ≤ δsat

δmax

|δr,c| if |δr,c| > δsat

(58)

Here δsat is the absolute value of the steering angles at which the rear actuators
saturate. Note that the function ksat(δr,c) can be written as a function of the
state vector x and 0 ≤ ksat(x) ≤ 1 for all x.

The closed-loop state-equation of the system in Fig. 6 can be written as

ẋ = (A − ksat(x)bcT )x (59)

Now, if there is a positive definite matrix P such that

AT P + PA <, (A − bcT )T P + P (A − bcT ) < 0 (60)

then V (x) = xT Px will define a Lyapunov function for the system (59), thus
assuring its asymptotic stability. This follows because all of the matrices that
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arise in (59) are convex combinations of the two matrices A, A − bcT . Thus if
there is a solution P to (60), this guarantees the asymptotic stability of (59).

The Circle Criterion provides a frequency domain condition that can be used
to test for the existence of a solution to (60). It has recently been shown that it
is also possible to test for the existence of such a solution using a simple time-
domain condition ([9],[10]). Specifically, there is a positive definite P satisfying
(60) if and only if the matrices A and (A−bcT ) are Hurwitz, i.e. their eigenvalues
lie in the open left half of the complex plane, and their product A(A− bcT ) has
no negative real eigenvalues. We use this fact to analyse the robust stability of
our control system with respect to parametric uncertainty. A major advantage
of the time-domain condition is its simplicity, as it only requires the calculation
of one set of eigenvalues as opposed to checking a frequency domain condition
for infinitely many values of a variable.

Figure 7 summarises the results of the analysis. To generate Fig. 7 we pro-
ceeded as follows. First the steering controller was tuned for the nominal values
of the car model parameters corresponding to a Mercedes S-Class. The real val-
ues of those parameters are uncertain, each of them lying within an interval
around its nominal value. For a given fixed vehicle speed, we calculated the en-
tries of A, b and c for a large number of values of the car model parameters
randomly chosen from their respective uncertainty intervals. We checked that
for all those values of the parameters, the matrices A and (A − bcT ) remained
Hurwitz. We then calculated the eigenvalues of A(A − bcT ) for all the values
of the parameters considered. We repeated the process outlined above for three
different vehicle speeds: 20 m/s, 35 m/s and 50 m/s. In Figure , we plot the two
eigenvalues closest to the real negative axis obtained with the different random
values of the car model parameters for the three different speeds considered. As
it can be seen in the figure, the eigenvalues of the matrix product A(A − bcT )
remain well clear of the real negative axis. In light of the above, we conclude
that the control system in Fig. 6 is robustly asymptotically stable for the speeds
considered. We can then affirm that our original control system is robustly BIBO
stable for those speeds.

8 Simulation Results

The full steering controller has been discretised and implemented on a detailed
non-linear simulation model of a Mercedes S-Class equipped with 4-wheel steer-
by-wire. The simulation results shown below illustrate the controller’s perfor-
mance and robustness.

8.1 Tracking of Reference Signals at Different Vehicle Speeds

The references to be tracked are as follows:

1. Yaw rate reference: Ramp of slope 0.05 rad/s2 during 1 s and then maintain
constant.
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Fig. 7. Illustration of the robust asymptotic stability of the control system

2. Sideslip reference: Ramp of slope -0.005 rad/s during 1 s and then maintain
constant.

Figure 8 shows the responses of the control system to these references for different
values of the vehicle speed.

8.2 Disturbance Rejection in μ-split Braking

In a μ-split braking situation the car brakes with the tyres at opposite sides of
the vehicle on different local road conditions. This results in the tyres at one
side of the car see an adhesion coefficient (μ) different from the one seen by the
tyres at the other side. An example of μ-split braking is a car braking with the
two wheels at one side over a patch of ice and the other two on dry asphalt.
In μ-split braking the torque created by the difference between the braking
forces at either side of the vehicle introduces disturbances in both yaw rate and
sideslip. These disturbances may induce the car to spin and cause the driver
to lose control of the vehicle. The proposed steering controller automatically
rejects any disturbances in sideslip and yaw rate generated in a μ-split braking
situation. To illustrate this capability, consider the following example. A car
travels along a straight level road at a speed of 60 m/s. At some point, the
driver starts braking without turning the steering wheel. Suppose that the two
wheels at the left hand side of the car are on dry asphalt (μ ≈ 1) and the two
on the right hand side are on ice (μ ≈ 0.2). Since the driver keeps the steering
wheel straight, the reference signals to be tracked by the steering controller
are zero rad/s yaw rate and zero rad sideslip. Figure 9 illustrates the result of
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Fig. 8. Tracking performance of the steering controller

simulating this manoeuvre with and without the steering controller switched
on. It can be seen that without the steering controller the car spins. On the
other hand, with the controller in place the disturbances are quickly rejected
and the car barely deviates from its intended straight path. The performance
of the steering controller in this manoeuvre demonstrates the robustness of the
control system–the cornering stiffness of a tyre during braking decreases as a
result of the longitudinal slip [5]–as well as its ability to operate with varying
vehicle speed.

8.3 Rear Actuator Saturation

The following manoeuvre is considered. Suppose again that the car travels on a
road with a μ-split surface so that the two wheels at the left hand side of the
car are on dry asphalt (μ ≈ 1) and the two on the right hand side are on ice
(μ ≈ 0.2). While turning at 50 m/s, the driver applies the brakes moderately for
1 s without moving the steering wheel. The simulation results shown in Fig. 10
below illustrate the response of the controlled car with and without anti-windup.
As it can be seen in the figure, the driver applies the brakes between time = 8
s and time = 9 s. The steering controller attempts to automatically reject the
disturbances introduced during braking while tracking the reference sideslip and
yaw rate signals. This results in the saturation of the rear actuators. Without
anti-windup, the controller is not able to recover from the disturbances and spin
out of control. On the other hand, the full steering controller (with anti-windup)
is able to retain control of the car.

9 Conclusions

In this paper, we have presented a new steering controller for cars equipped
with 4-wheel steer-by-wire. The controller allows the car to track given reference
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Fig. 9. Disturbance rejection performance of the steering controller in a μ-split
braking manoeuvre

sideslip and yaw rate signals while rejecting external disturbances. Schemati-
cally, the controller comprises five distinct functional elements: a linear input
transformation and a feedback element scheduled with the vehicle speed, which
together render the yaw rate dynamics nearly speed-invariant with respect to the
new controllable inputs; a linear diagonal controller valid for all operating ve-
hicle speeds, which provides robustness and disturbance rejection performance;
a feedforward element, which improves tracking performance; an anti-windup
scheme, which allows the controller to perform satisfactorily when the rear ac-
tuators saturate. We have analysed the robust stability of the control system
using recent results from the theory of common quadratic Lyapunov functions.
The performance and robustness of the control system have been demonstrated
through simulation. Future work will include a detailed robustness and integrity
analysis together with validation experiments with the controller implemented
on a real car equipped with 4-wheel steer-by-wire.
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Fig. 10. Performance of the controller when the rear actuators saturate
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Abstract. We present a geometrical approach for designing robust min-
imum variance (RMV) beamformers against steering vector uncertain-
ties. Conventional techniques enclose the uncertainties with a convex
set; the antenna weights are then designed to minimize the maximum
array output variance over this set. In contrast, we propose to cover the
uncertainty by a second-order cone (SOC). The optimization problem,
with optional robust interference rejection constraints, then reduces to
the minimization of the array output variance over the intersection of
the SOC and a hyperplane. This is cast into a standard second-order
cone programming (SOCP) problem and solved efficiently. We study the
computationally efficient case wherein the uncertainties are embedded
in complex-plane trapezoids. The idea is then extended to arbitrary un-
certainty geometries. Effectiveness of the proposed approach over other
schemes and its fast convergence in signal power estimation are demon-
strated with numerical examples.

1 Introduction

Antenna arrays constitute an important part in modern communication systems,
serving to introduce extra degrees of freedom in beampattern synthesis, spatial
filtering and/or detection of incoming signals. The design of antenna arrays when
precise system parameters are available is a well-studied problem; for instance,
the celebrated minimum variance (MV) beamformer, designed using Capon’s
method [1], has the property that the variance of the combined (i.e., weighted and
summed) array output is minimized, while a unity gain is maintained in the look
direction. However, in practical situations, exact models of the antenna array are
unavailable. Uncertainties in the steering vector of the desired signal arise due
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to a multitude of reasons including array calibration errors, uncertain angle-of-
arrival (AOA), amplifier imperfections and environmental inhomogeneities [2,3,
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. These uncertainties, when not accounted for in
the design process, can lead to severely degraded performance. For example, the
performance of the MV beamformer is known to be sensitive and susceptible to
mismatches in the presumed and actual steering vectors [14]. Hence we have the
“robust antenna weight design problem,” i.e., the design of antenna weights such
that the performance can be guaranteed in spite of the presence of uncertainties.

Some approaches towards robust antenna weight design can be found in
[15,16,17,18,19,20,21] and the references therein. For example, point and deriva-
tive constraints [15, 16, 17] imposed on the mainbeam can be used to design an-
tenna arrays that offer tolerance against AOA mismatch, but their performance
subject to other kinds of mismatches is hard to predict. The eigenspace-based
beamformer in [18] is effective, although only when the signal-to-noise ratio
(SNR) is high. Other methods in [17,19,20,21] share a similar framework wherein
a certain form of weighted diagonal loading or quadratic penalty is added to the
objective or cost function. The weight determination of that penalty, however,
is not clear in practice. Further, these techniques assume, either explicitly or
implicitly, that the uncertainty is isotropic (i.e., equally probable around the
nominal steering vector) which is generally not the case. In other words, these
methods or algorithms may result in overly conservative designs at the expense
of other considerations such as power, complexity, and feasibility.

Recently, a number of techniques based on mathematical programming have
been proposed for the robust antenna weight design of narrowband systems called
robust MV (RMV) beamforming [2,3,4,5,6,7,8,9,10,11,12]. The basic idea un-
derlying these techniques is to model the steering vector uncertainties as a convex
set or part of a convex set. The antenna weights are then determined so as to
minimize the maximum array output variance (or an upper bound thereof) over
the steering vector uncertainty set. In [3,4,5,6,7], the uncertainty set is covered
by a hypersphere3 or an ellipsoid around the nominal steering vector. It can be
shown that this class of beamforming techniques belongs to the diagonal load-
ing approach, of which the amount of loading can be directly determined from
the uncertainty set. The resulting optimization problem is a second-order cone
programming (SOCP) problem [22,23], which can be solved efficiently via inte-
rior point algorithms, e.g., [24,25,26,27], or by the Lagrange multiplier method,
e.g., [4, 6]. Simulations have shown the superiority of this SOCP beamforming
approach over other popular robust beamformers in adaptive arrays [3]. Nonethe-
less, uncertainty modeling using a worst-case hypersphere [3] is still isotropic and
does not exploit the structure of the uncertainty, and may sometimes lead to im-
practical designs of high power requirement or even programming infeasibility.

3 Here hypersphere and ellipsoid (flat ellipsoid) respectively refer to the n-dimensional
counterparts of a Euclidean ball and the injective (non-injective) affine mapping
of a Euclidean ball. A polyhedral cone is the set C = {x|Ax ≤ 0}, i.e., C is the
intersection of finitely many linear half-spaces. Specific details can be found in [2,3,
4,5,6,7,8].
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Ellipsoidal uncertainty modeling [4, 5, 6, 7] provides tighter uncertainty model-
ing and generally produces more accurate results in applications such as signal
power estimation [6, 7]. A different design approach is to encompass the uncer-
tainty set by a polyhedral cone [8]. A drawback is that the use of a polyhedral
cone with limited extreme rays (the basis rays of a cone) can again result in
overly conservative constraints, while increasing the number of extreme rays will
cause an exponential growth in the programming complexity and prohibit its
use in larger arrays. Moreover, determination of the polyhedral cone angle in
relation to the uncertainty set was not pursued further in [8].

The main contribution of this paper is that it extends the idea of a polyhedral
cone to a second-order cone (SOC), and develops a constructive way, employing
either a simple heuristic or a theoretically optimal SOCP approach, to obtain
a tight SOC bounding the uncertainty set (also see [2]). The convexity of the
optimization constraint is exploited such that the optimization process can be
largely reduced from the whole uncertainty set to the intersection of the bounding
SOC and a hyperplane outside the set. A special case of modeling steering vector
uncertainties using complex-plane trapezoids is studied in detail. For practical
reasons, extension of the proposed scheme to robust interference rejection is
also considered. The corresponding narrowband beamforming task is formulated
and efficiently solved as an SOCP problem. Numerical examples show that this
SOC RMV beamformer exhibits tight uncertainty modeling, very low power
requirement, and fast convergence in signal power estimation.

The paper is organized as follows. In Sect. 2, preliminaries in MV beamform-
ing are reviewed. Sect. 3 proposes a generic algorithm for RMV beamforming
utilizing a geometrical SOC bounding idea. Reduction of the optimization pro-
cess from a convex set to the circumference of a hyperellipse is described. An
application of the proposed SOC RMV beamforming algorithm is demonstrated,
wherein steering vector uncertainties are embedded in complex-plane trapezoids.
Simplification of the techniques and their extension to arbitrary uncertainty ge-
ometries are also discussed. Sect. 4 presents numerical examples and verifies the
effectiveness and power efficiency of the proposed approach over other schemes.
Finally, Sect. 5 presents the conclusion.

We close this section with a description of the notations used. The set of real
numbers is denoted by IR and the set of complex numbers by C. IRN and CN

denote the set of real and complex vectors, respectively, with N components. The
set Ω is convex if v1,v2 ∈ Ω implies ρ1v1+ρ2v2 ∈ Ω for every real ρ1,ρ2 ≥ 0 that
satisfy ρ1 + ρ2 = 1. A general convex optimization problem is the minimization
of a linear function over a convex set Ω, namely,

min(c∗x) subject to x ∈ Ω (1)

where c and x are complex or real vectors, and (◦)∗ denotes conjugate transpose
which is equivalent to transpose, (◦)T , for real vectors. A second-order cone or
SOC is a special convex set whose definition, for an “upright” SOC of dimension
2N and a cone angle parameter λ, is
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Fig. 1. An upright SOC with a variable cone angle. z̃ is the unit vector along
the symmetry axis

Kλ =
{[

x1

x2

] ∣∣∣∣ x1, λ ∈ IR,x2 ∈ IR2N−1, λ ≥ 0, x1 ≥ λ ‖x2‖
}

, (2)

where ‖◦‖ denotes the Euclidean norm. The conceptual visualization of an SOC
is shown in Fig. 1. Clearly, λ is a parameter that controls the cone angle, namely,
a large λ corresponds to a “narrow” cone and vice versa. And z̃ = [1 0 · · · 0 ]T ∈
IR2N is the unit vector in the direction of the symmetry axis of Kλ. A second-
order cone programming or SOCP problem [22, 23] with real-valued variables
(indicated by tildes on top, as will be followed throughout this paper) takes the
form of

min(c̃T x̃) subject to x̃ ∈ Kλ . (3)

It should be noted that although SOCP represents a subclass of the more general
semidefinite programming (SDP) [28] (namely, the optimization of a linear func-
tion over linear matrix inequalities [29]), dedicated SOCP solvers, e.g., [25, 26],
should be used [22] because of their much better worst-case complexity than
general SDP solvers such as [27].

2 Background in Minimum Variance Beamforming

The output x(t) ∈ CN of an N -element antenna array is

x(t) = a(θ)s(t) + AiSi(t) + n(t) , (4)

where a(θ) ∈ CN is the steering vector of the desired narrowband signal s(t)
arriving from an angle θ, Ai is an N × L matrix whose lth column, a(θl), is
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the steering vector of the lth interfering signal in Si(t) = [ s1(t) · · · sL(t) ]T , and
n(t) ∈ CN is the additive noise component. The combined output of the array
subject to a complex weight w is

y(t) = w∗x(t) . (5)

The interference-plus-noise covariance matrix Rin is defined as

Rin = E ((AiSi(t) + n(t))(AiSi(t) + n(t))∗) , (6)

whereas the sample covariance matrix Rx is defined, and approximated by M
recently received samples (called snapshots), as

Rx = E(xx∗) ≈ 1
M

M∑
p=1

x(p)x(p)∗ . (7)

One of the metrics for the performance of a beamformer is the signal-to-inter-
ference-plus-noise ratio (SINR) designated as

SINR =
|w∗a(θ)|2 σ2

s

w∗Rinw
, (8)

with σ2
s being the signal power.

2.1 Capon Beamformer

The MV beamformer is obtained by solving

min(w∗Rxw) subject to w∗a(θp) = 1 , (9)

where θp and a(θp) are the presumed (or nominal) AOA and steering vector re-
spectively. If this presumed steering vector matches the physical steering vector,
we have the optimal solution of (9) given by the Capon’s method [1]

wmv =
R−1

x a(θp)
a(θp)∗R−1

x a(θp)
. (10)

In beampattern synthesis, it may be desirable to allow for AOA uncertainty
by maintaining unity gain in a small spread of angles [4]. This is done in the
MV beamforming by adding extra equality constraints. For example, defining
the matrix C = [a(θp) a(θp1) a(θp2) · · · ] where θpi’s are angles around θp, and
replacing the optimization constraint in (9) by

C∗w = d (11)

where d is a column vector of ones, the optimal weight vector is now [4, 12]

wmv = R−1
x C(C∗R−1

x C)−1d . (12)
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Fig. 2. Uncertainty region of a steering vector element (annulus sector in bold
line) bounded by a trapezoid of vertices a′

i1, a′
i2, a′

i3 and a′
i4. Here αi, βi, γi, δi,

ψi ≥ 0

This formulation can also be used to introduce nulling at the interference angles
if we define, with respect to (4), C = [a(θ) Ai ] and d = [1 ξ1 · · · ξL ]T where
ξl ≥ 0, l = 1, 2, · · · , L, are the desired interference gains (some small real values
or zero) for signals coming from θl. Roughly speaking, the introduction of each
equality constraint at a certain angle reduces one degree of freedom in the choice
of the weight vector. Therefore, smaller arrays are more likely to yield infeasible
designs when the constraints are stringent.

2.2 Robustness Against Signal Steering Vector Uncertainties

Let the signal steering vector be a = [a1 · · · aN ]T ∈ CN . Referring to Fig. 2, an
element ai of a may be subject to phase uncertainties, αi, βi, due to uncertain
AOA, and phase and gain uncertainties, ψi, γi and δi, due to amplifier tolerance.
Thus in practice ai may assume any value inside the bolded annulus sector in
Fig. 2. Let Ω ⊂ CN be the set that contains all the possible a s (corresponding
to all possible combinations of ai, i = 1, 2, · · · , N). An RMV beamformer [2, 3,
4,5,6,7,8] is then designed by maintaining at least a unity gain for all members
in Ω:

min(w∗Rxw) subject to Re(w∗a) ≥ 1, ∀a ∈ Ω (13)

where Re (◦) and Im (◦) (to appear later) give the real and imaginary parts of
the argument.

2.3 Robustness Against Interference Uncertainties

In theory, the programming solution to (13) (namely, minimizing the output
power subject to signal protection) automatically achieves interference rejec-
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tion. But in practice the tolerance in the amplifier implementation may render
different gains and phases from the designed values. In mobile or imperfect chan-
nel scenario, drifting of the interference angle(s) may also occur between updates
of weights in an adaptive array. To maintain a high SINR, as will be seen in the
numerical examples, it is of value to explore robust interference rejection. Similar
to the case of the nominal steering vector, uncertainties in interference rejection
can be lumped as uncertainties in the interference steering vectors. Suppose al

(l = 1, 2, · · · , L) is contained in the uncertainty sets Ωl ⊂ CN , then it is desirable
that the array look direction constraint and the interference rejection constraints
hold simultaneously, namely,

min(w∗Rxw) subject to{
Re(w∗a) ≥ 1 , ∀a ∈ Ω

‖w∗al‖ ≤ ξl , ∀al ∈ Ωl , l = 1, 2, · · · , L .

(14)

The inequality settings, instead of equalities, in the interference rejection con-
straints lend themselves to compatibility in programming formulation as will
become evident later.

2.4 Solution Via Convex Optimization

One numerical approach towards the solution of (14) is based on convex op-
timization. The first step is to embed the uncertainty sets Ω and Ωl, l =
1, 2, · · · , L, in convex sets (if they are not already convex); see for example,
[2, 3, 4, 5, 6, 7, 8, 9]. An example is to use the convex hulls, in the form of convex
polytopes4, of Ω and Ωl. Then, from convexity, it suffices to check that the look
direction constraint and interference rejection constraints are satisfied on the
vertices of these uncertainty convex hulls. Therefore, by choosing the enclosing
convex sets appropriately, an infinite set of optimization constraints can be re-
duced to those on the vertices of a hull, or on the curved boundary of an arbitrary
convex geometry. Nonetheless, the complexity of the hull, in terms of its number
of vertices, still increases exponentially with the number of antenna element N
and prohibits practical computation. In [3, 4, 5, 6, 7, 8], hyperspheres, nondegen-
erate and degenerate (or flat) ellipsoids, and polyhedral cones are respectively
used to enclose the uncertainties, and the programming problem is cast as an
SOCP or a quadratic programming problem of order linearly dependent on N .
It should, however, be noted that the approach based on hyperspheres does not
exploit the uncertainty structure and may result in overly conservative designs
with high power requirement or even render the design problem infeasible. Also,
robust interference rejection is not addressed in these works. In contrast, we pro-
pose an approach that exploits the uncertainty structure and provides robustness
against steering vector uncertainties regarding both the desired and interfering

4 A polytope is a finite region of n-dimensional space enclosed by a finite number of
hyperplanes. And the convex hull of a set of points is the smallest convex set that
includes the points.



230 Ngai Wong, Venkataramanan Balakrishnan, and Tung-Sang Ng

signals. The final beamforming problem is also an SOCP problem of size linearly
dependent on N .

For convenience of computation and coding, complex quantities are often
transformed into real quantities. Indicating real-valued matrices and vectors by
tildes, we define

w̃ =
[

Re(w)
Im(w)

]
, ã =

[
Re(a)
Im(a)

]
, ãl =

[
Re(al)
Im(al)

]
,

R̃x =
[

Re(Rx) −Im(Rx)
Im(Rx) Re(Rx)

]
.

(15)

Starting with look direction constraint only, (13) can be equivalently written as

min(w̃T R̃xw̃) subject to w̃T ã ≥ 1, ∀ã ∈ Ω̃ (16)

where Ω̃ is a set derived from Ω by similarly stacking the real and imagi-
nary parts of each element in Ω. To incorporate the interference rejection con-
straints in (14), we note that the magnitudes of the combined gains ‖w∗al‖,
l = 1, 2, · · · , L, involve a quadratic relationship of the real and imaginary parts
of w∗al that describes a circle of radius ξl. To reduce the constraints into linear
ones for SOCP formulation, two sufficient (stronger) conditions governing the
real and imaginary parts are imposed, namely,⎧⎨⎩

− ξl√
2
≤ w̃T ãl ≤ ξl√

2

− ξl√
2
≤ w̃T

[
0 I
−I 0

]
ãl ≤ ξl√

2

, ∀ãl ∈ Ω̃l (17)

for l = 1, 2, · · · , L, where 0 and I are zero and identity matrices of compatible
dimensions, and Ω̃l being analogous to Ω̃. It can be seen that (17) confines the
real and imaginary parts of w∗al to be within a square inscribed in the circle
of radius ξl. Accordingly, (17) can be appended to the constraint list in (16) to
achieve robust interference rejection. Since increasing the number of constraints
may also lead to infeasibility in the design problem, robust interference rejection
is more likely to be realized in larger arrays where more freedom is available.

2.5 Signal Power Estimation and Array Output Power

A main goal in many antenna array applications is to estimate the signal power
σ2

s [6, 7]. In traditional beamforming, this is simply given by

σ2
s ≈ w∗

mvRxwmv . (18)

A much more accurate estimate proposed in [6, 7], with the elimination of a
“scaling ambiguity” by taking into account ‖a(θ)‖ =

√
N , can be shown to be

σ2
s ≈ 1

N

‖Rxwrmv‖2

w∗
rmvRxwrmv

(19)
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where wrmv is the solution to the RMV beamformers in [3,4,5,6,7] or the present
work.

Another power related issue is the array output power. A set of appropriately
designed antenna weights will significantly suppress interference, therefore from
(4) and (5) we have

y(t) = w∗x(t) ≈ w∗a(θ)s(t) + w∗n(t) (20)

where a(θ)s(t) is a column vector with time (phase) shifted versions of the desired
signal s(t) (e.g., see [7]). If we further assume that the signal is random over time
and uncorrelated with the noise (assumed to be white Gaussian), then the mean
array output power is

E (y(t)y(t)∗) = σ2
s ‖w‖2 + σ2

n ‖w‖2 (21)

where σ2
n is the noise power. The constraint of the Capon beamformer (namely,

w∗a(θp) = 1) will put the first term on the right of (21) to σ2
s only, but in the

robust formulation the more general form in (21) holds. A major implication
is that if an analog beamformer is built, the power of the array output is then
proportional to ‖w‖2 (see also [9,22]). While in digital implementation, the input
needs to be normalized by ‖w‖2 to prevent overflow due to finite wordlengths.
In both cases, ‖w‖2 (= ‖w̃‖2 in (15)) serves as a metric that should be kept as
low as possible. Since ‖w‖2 can also be interpreted as the power output of an
array subject to unit-power signal and zero noise and interference, it is given a
unit of watt.

3 An SOC Bounding Approach

As we have observed, the main drawback in directly solving (16), either stan-
dalone or with additional constraints in (17), is the exponential growth in the
problem size when the number of antenna elements, N , grows. Our main con-
tribution is an algorithm, called the SOC RMV beamforming algorithm, that
reformulates the original problem so that the order of constraints grows linearly
with N . In addition, the uncertainty structure and convexity in the optimization
constraints are exploited, thereby leading to accurate and power-efficient beam-
formers. To simplify notations, we assume in the rest of this paper that Ω and
Ωl (and consequently Ω̃ and Ω̃l) are some convex sets that encompass the signal
and interference steering vector uncertainties a and al (ã and ãl), l = 1, 2, · · · , L.

Two theorems central to our proposed algorithm, which are related to the
convexity in the optimization constraints, are given here:

Theorem 1. (Robust look direction constraint) Let Ω̃ = Co{ã1, ã2, · · · , ãn},
where Co denotes the convex hull of a set, i.e., all convex combinations of its
elements. Moreover, let 0 /∈ Ω̃. Let Kλ be any SOC with Ω̃ ⊂ Kλ. Suppose that H
is a hyperplane separating 0 and Ω̃. Define the hyperellipse ε̃ by ε̃ = Kλ ∩H and
let ∂ε̃ denote its boundary. Under these conditions, consider some w̃ ∈ IR2N . If
w̃T ã ≥ 1 for all ã ∈ ∂ε̃ , then w̃T ã ≥ 1 for all ã ∈ Ω̃.
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Remark 1. The implication of Theorem 1 is that the condition w̃T ã ≥ 1 for all
ã ∈ ∂ε̃ is sufficient for robust look direction constraint in (16) to hold.

Remark 2. The condition 0 /∈ Ω̃ automatically holds for any physically mean-
ingful set of steering vectors.

Proof. The hyperplane K can be parameterized as

H =
{
ã | b̃T ã = 1

}
(22)

for some b̃ ∈ IR2N . Since H separates 0 and Ω̃, we must have b̃T ãi ≥ 1, i =
1, 2, · · · , n. Define τi = (b̃T ãi)−1. Then, by the definition of Kλ, we must have
τiãi ∈ Kλ. Moreover, τib̃T ãi = 1, or τiãi ∈ H. Thus τiãi ∈ ε̃.

Now suppose that for some w̃ ∈ IR2N , w̃T ã ≥ 1 for all ã ∈ ∂ε̃. Then, as ε̃ is
a convex set, we must have w̃T ã ≥ 1 for all ã ∈ ε̃, and in particular, we must
have

τiw̃T ãi ≥ 1 , i = 1, 2, · · · , n .

Consequently

w̃T ãi ≥ τ−1
i ≥ 1 , i = 1, 2, · · · , n , (23)

concluding the proof. ��

Theorem 2. (Robust interference rejection) Let Ω̃l = Co{ãl1, ãl2, · · · , ãln} and
0 /∈ Ω̃l. Let Kλ be any SOC with Ω̃l ⊂ Kλ. Suppose H is a hyperplane such that
0 and Ω̃l lie on the same side of it, with the Euclidean distance of 0 from H
exceeding that from any point in Ω̃l (i.e., Ω̃l is “between” 0 and H). Define the
hyperellipse ε̃l by ε̃l = Kλ ∩ H and let ∂ε̃l denote its boundary. Under these
conditions, consider some w̃ ∈ IR2N . If

∣∣w̃T ãl

∣∣ ≤ μl for all ãl ∈ ∂ε̃l, then∣∣w̃T ãl

∣∣ ≤ μl for all ãl ∈ Ω̃l.

Remark 3. Let w̃′ =
[
0 −I
I 0

]
w̃ and μl = ξl√

2
, Theorem 2 implies that the con-

ditions
∣∣w̃T ãl

∣∣ ≤ ξl√
2

and
∣∣w̃′T ãl

∣∣ ≤ ξl√
2

for all ãl ∈ ∂ε̃l, l = 1, 2, · · · , L, are
sufficient for the robust interference rejection constraints in (17) to hold.

Proof. Follows similarly to that of Theorem 1, and is therefore omitted. ��
With reference to Fig. 3, the proposed SOC RMV beamforming algorithm is
summarized in the following three steps:

1. Fit an SOC around the hull of Ω̃. If robust interference rejection is needed,
also find SOCs around the hulls of Ω̃l, l = 1, 2, · · · , L.
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Fig. 3. A second-order cone encompassing: (a) Ω̃ with a lower hyperellipse; (b)
Ω̃l with an upper hyperellipse

2. Intersect the SOC with a hyperplane tangent to the bottom of the hull of
Ω̃, thus forming a hyperellipse with boundary σ (Fig. 3(a)). In the case of
robust interference rejection, hyperplanes tangent to the top of the hulls of
Ω̃l are found, forming hyperellipses of boundaries σ̄l, l = 1, 2, · · · , L (Fig.
3(b)).

3. Transform (16) into an SOCP problem and optimize with respect to the
stronger conditions ã ∈ σ, and ãl ∈ σ̄l, l = 1, 2, · · · , L, in (17) for robust
interference rejection.

It can be seen that the constraints in step 3 represent two sets of stronger
conditions. Specifically, by Theorem 1, if w̃T ã ≥ 1 in (16) is satisfied for all
ã ∈ σ, it is automatically satisfied for all ã on the hyperellipse, as well as all
ã ∈ Ω̃ above the hyperellipse. Similarly, if the conditions in (17) are satisfied for
all ãl ∈ σ̄l, l = 1, 2, · · · , L, then by Theorem 2 they are automatically satisfied
for all ãl on the hyperellipse, as well as all ãl ∈ Ω̃l below the hyperellipse. The
following demonstrates an application of the proposed algorithm wherein the
steering vector uncertainties are modeled by complex-plane trapezoids.

3.1 Parametrizing the SOCs Bounding Ω̃ and Ω̃l

In this step, Ω and Ωl, l = 1, 2, · · · , L, are obtained by modeling steering vec-
tor uncertainties using complex-plane trapezoids. Subsequently Ω̃ and Ω̃l are
derived by stacking the real and imaginary parts of each element in Ω and Ωl.
Illustration is provided only for the location of the SOC bounding Ω̃, while that
for the case of Ω̃l proceeds in exactly the same way. Recalling from Sect. 2 and
revisiting Fig. 2, an element ai of a = [a1 · · · aN ]T may assume any value inside
the annulus sector due to phase uncertainties, αi, βi, resulting from uncertain
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Fig. 4. Rotation of Ω̃′ or Ω̃′
l into the bounding SOC using Householder transform

AOA, and phase and gain uncertainties, ψi, γi and δi, resulting from amplifier
imperfections. A sensible way, which also serves as a stronger condition, is to
encompass the annulus sector using a trapezoid with vertices a′

i1, a′
i2, a′

i3, a′
i4 as

in Fig. 2. The actual ai may then be regarded as a convex combination of a′
i1,

a′
i2, a′

i3 and a′
i4, i = 1, 2, · · · , N . By defining the set Ω′ ⊂ CN as the union of

these vertices,

Ω′ =

⎧⎪⎨⎪⎩vj = [a′
1k1

a′
2k2

· · · a′
NkN

]T ∈ CN

∣∣∣∣∣∣∣
ki = 1, 2, 3 or 4
i = 1, 2, · · · , N

j = 1, 2, · · · , 4N

⎫⎪⎬⎪⎭ , (24)

it is clear that every point in Ω′ constitutes a vertex of the minimum convex hull
of Ω. As discussed before, optimization over Ω can be replaced by optimizing
over every point in Ω′. Apparently, the real-valued counterpart of Ω′, Ω̃′ ⊂ IR2N ,
is formed by stacking the real and imaginary parts of every point in Ω′, i.e., if
v ∈ Ω′, then ṽ ∈ Ω̃′ is defined as ṽ = [Re(vT ) Im(vT )]T . Obviously, Ω̃′ also
constitutes the vertices of the minimum convex hull of Ω̃. Instead of directly
finding the SOC that encloses Ω̃′, Ω̃′ is first rotated, using the angle and distance
preserving Householder transform [8], into the orientation of the upright SOC
to find the SOC that just contains the rotated Ω̃′, denoted as H̃Ω̃′ (or H̃ṽ for
all ṽ ∈ Ω̃′) in Fig. 4. Defining a unit vector c̃ = [Re(cT ) Im(cT )]T ∈ IR2N in the
direction of Ω̃′, we have

H̃ =

{
I− 2 (c̃−z̃)(c̃−z̃)T

(c̃−z̃)T (c̃−z̃) , c̃ �= z̃
I, c̃ = z̃

(25)

where ‖c̃‖ = ‖c‖ = 1. H̃ is a symmetric orthogonal matrix such that H̃ = H̃T =
H̃−1. Now the question remains as to how to choose the unit vector c̃ for the
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tightest SOC that encompasses H̃Ω̃′, denoted as Kλmin . Two approaches are in
place that offer a tradeoff between accuracy and computational load.

Optimal Method. This method finds the c̃ that gives the tightest possible
SOC. To do this we notice from (2) that an SOC, Kλ, that contains a particular
ṽ must satisfy

λ ≤
([

1 0 · · · 0
]
H̃ṽ
)
/
∥∥∥diag

[
0 1 · · · 1

]
H̃ṽ
∥∥∥

=
(
(H̃c̃)T H̃ṽ

)
/
∥∥∥(I − H̃c̃(H̃c̃)T

)
H̃ṽ
∥∥∥

=
(
ṽT c̃
)
/
∥∥ṽ − (ṽT c̃

)
c̃
∥∥

= 1/

√
(‖ṽ‖/ṽT c̃)2 − 1 .

(26)

The second line in (26) stems from the fact that H̃c̃ = z̃ = [1 0 · · · 0 ]T , and the
third line has the geometrical interpretation that it is the projection of ṽ onto c̃
divided by the norm of components in ṽ that are orthogonal to c̃. Apparently, λ is
independent of H̃ because the cone angle is preserved by the transform. Finding
the tightest SOC is equivalent to choosing a c̃ that maximizes the minimum λ,
denoted by λmin, such that Kλmin contains H̃ṽ for all ṽ ∈ Ω̃′. This statement
can be restated as a programming problem in variable c̃:

max
‖c̃‖=1

( min
ṽ∈Ω̃′

(
ṽT c̃
‖ṽ‖ ) ) where ṽT c̃ > 0 , (27)

or qualitatively, to choose a unit vector c̃ such that the minimum projection of
those unit vectors ṽ/‖ṽ‖ (ṽ ∈ Ω̃′) onto c̃ is maximized. Clearly, c̃ and ṽ/‖ṽ‖
are all on the surface of the unit sphere. Also, the projection of ṽ/‖ṽ‖ (ṽ ∈ Ω̃′)
onto c̃ can equivalently be regarded as the projection, which is a real quantity,
of v/‖v‖ (v ∈ Ω′) onto c. With reference to Fig. 2 and by symmetry argument,
the vector c that gives the tightest SOC must have each of its components lying
along the symmetry axis of the corresponding trapezoid. Using (◦)i to denote the
ith component of a vector and arg (◦) to denote the angle of a complex quantity,
we have

arg ((c)i) = arg(a′
i1 + a′

i2) where i = 1, 2, · · · , N . (28)

Since only the projection is of interest, the number of vj in (24) to be considered
is largely reduced. This is because due to symmetry about (c)i, a vector in (24)
with a particular ki = 1 produces the same projection as another vector with
that particular ki = 2, and the same holds for the case of ki = 3 and ki = 4.
So there are effectively 2N vjs (j = 1, 2, · · · , 2N) of interest whose ki = 1 or
3 (i = 1, 2, · · · , N). Next, to find the magnitudes of those components in c, we
define a real vector ĉ that holds the element-wise magnitudes of c, i.e.,

(ĉ)i = |(c)i| where i = 1, 2, · · · , N , (29)
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and another set of real vectors v̂j such that

(v̂j)i =
∣∣∣∣( vj

‖vj‖
)

i

∣∣∣∣ cos
(

αi + βi + 2ψi

2

)
where i = 1, 2, · · · , N , (30)

for j = 1, 2, · · · , 2N as described earlier. The problem of maximizing the mini-
mum projection in (27) is then equivalent to the SOCP [22,23] problem:

max(τ) (or min(−τ)) subject to{
0 < τ ≤ v̂T

j ĉ where j = 1, 2, · · · , 2N

‖ĉ‖ ≤ 1
(31)

for which the optimization variables are τ and ĉ. The condition ‖ĉ‖ = 1 will
automatically be satisfied because the last constraint in (31) is tight for any
optimal solution. It can be seen that (31) is essentially a linear programming
problem except for the last quadratic constraint. Such SOCP structure can be
solved using, say, the SOCP solver in [26]. The optimal τ thus obtained consti-
tutes an optimal solution of (27) and can be substituted back into (26) to get
the maximum λmin, namely,

λmin =
1√

τ−2 − 1
. (32)

The direction vector c (and thus c̃) corresponding to this tightest SOC, Kλmin ,
is then obtained through combining ĉ and (28). Referring to Fig. 4, a simple and
obvious choice for the hyperplane intersecting the SOC (to be used in step 2 of
the algorithm) is the one that is normal to the symmetry axis of the SOC. The
parameter rmin, which specifies the height of the supporting hypercircle resulting
from the intersection, is calculated from the minimum projection of v (ṽ) onto
c (c̃). This is obtained in a straightforward manner by

rmin =
[
Re([a′

11 a′
21 · · · a′

N1 ]) Im([a′
11 a′

21 · · · a′
N1 ])

] [Re(c)
Im(c)

]
. (33)

The tightest SOC that contains a particular Ω′
l (the interference counterpart

of Ω′), l = 1, 2, · · · , L, is found in the same way except now the height of the
upper hypercircle is of interest, which is

rmax =
[
Re([a′

13 a′
23 · · · a′

N3 ]) Im([a′
13 a′

23 · · · a′
N3 ])

] [Re(c)
Im(c)

]
(34)

where the a′
i3s and c stand for the uncertainty vectors and orientation for al and

Ω̃′
l, respectively.

Centroid Method. A simple heuristic that largely reduces the computation
of c from its exponential dependence (see (31)) to linear dependence on N , at
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a small expense of accuracy, is to approximate the optimal c by the normalized
(unit-length) centroid of all points in Ω′. Defining

a′
k = [a′

1k a′
2k · · · a′

Nk ]T , k = 1, 2, 3, 4 , (35)

c is given by

c =

(
4∑

k=1

a′
k

)
/

∥∥∥∥∥
4∑

k=1

a′
k

∥∥∥∥∥ . (36)

Using the same notational convention as in the optimal method, λmin is obtained
by finding the particular v̂j that decorrelates with ĉ as much as possible. This
can be achieved in just N − 1 comparison steps: First, the components of c are
along the symmetry axes of the uncertainty trapezoids, so the v̂j definition in
(30) still applies. Besides, ĉ is now a predetermined quantity as given by (36).
The next step is to arrange the magnitude components of ĉ in a particular order
so that they form a descending sequence; λmin is then given by a v̂j whose N
components are chosen to form an ascending sequence in that particular order.
Since there are N such choices of v̂j , λmin can be determined within N − 1
comparisons. In contrast, it generally requires 4N comparisons to find the ra-
dius of the smallest hypersphere (centered at the presumed steering vector) [3]
bounding the annulus sector in Fig. 2. Likewise, rmin and rmax are obtained by
(33) and (34) respectively. Experiments have shown that with trapezoidal un-
certainty modeling, the RMV beamformers designed using this centroid method
perform almost identically as those obtained by the optimal way. Therefore, in
practical situations the centroid approximation of c should always be used when
computation is of concern, especially when N is large.

3.2 Transformation of Constraints into SOC Formulation

As discussed, the robust look direction constraint in (16) can be realized under
a stronger condition, namely, on the boundary σ of the lower hypercircle. In Fig.
4, the boundary σ, in a rotated manner, is

H̃σ =
[

rmin

u

]
⊂ Kλmin where u ⊂ IR2N−1, ‖u‖ =

rmin

λmin
. (37)

Noting σ = H̃(H̃σ), the gain constraint in (16) becomes

w̃T (H̃
[
rmin

u

]
) ≥ 1 . (38)

Let H̃1 ∈ IR1×2N be the first row of H̃, and H̃2 ∈ IR(2N−1)×2N be H̃ without
the first row, (38) can be rewritten as

− uT H̃2w̃ ≤ rminH̃1w̃ − 1 . (39)
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When u = −(rmin/λmin)H̃2w̃/
∥∥∥H̃2w̃

∥∥∥, the maximum of the left hand side of
(39) is achieved. And the robust look direction constraint takes the form of an
SOCP constraint: ∥∥∥∥ rmin

λmin
H̃2w̃

∥∥∥∥ ≤ rminH̃1w̃ − 1 . (40)

By the same token, the robust interference rejection constraints in (17) can be
realized under a stronger condition, namely, on the boundary σ̄l of the upper
hypercircle. In Fig. 4, the boundary σ̄l, in a rotated manner, is given by

H̃σ̄l =
[

rmax

ū

]
⊂ Kλmin where ū ⊂ IR2N−1, ‖ū‖ =

rmax

λmin
. (41)

Let H̃l1 ∈ IR1×2N be the first row of H̃, and H̃l2 ∈ IR(2N−1)×2N be H̃ without
the first row, the first equation in (17) can verified to be equivalent to∥∥∥∥rmax

λmin
H̃l2w̃

∥∥∥∥ ≤ min
(
−rmaxH̃l1w̃, rmaxH̃l1w̃

)
+

ξl√
2

. (42)

Also, define

J̃ = H̃
[
0 −I
I 0

]
, (43)

and let J̃l1 ∈ IR1×2N be the first row of J̃, and J̃l2 ∈ IR(2N−1)×2N be J̃ without
the first row, the second equation in (17) is equivalent to∥∥∥∥rmax

λmin
J̃l2w̃

∥∥∥∥ ≤ min
(
−rmaxJ̃l1w̃, rmaxJ̃l1w̃

)
+

ξl√
2

. (44)

3.3 Beamformer Optimization Problem in SOCP Format

Finally, let R̃x = ŨT Ũ be the Cholesky factorization of R̃x, the objective func-

tion of the SOC RMV beamforming problem in (16) can be rewritten as
∥∥∥Ũw̃

∥∥∥2

.

As minimizing
∥∥∥Ũw̃

∥∥∥2 is the same as minimizing
∥∥∥Ũw̃

∥∥∥, by introducing an aux-
iliary variable ε, (16) is cast into a standard SOCP problem of order linearly
dependent on N :

min(ε) subject to∥∥∥Ũw̃
∥∥∥ ≤ ε,

∥∥∥∥ rmin

λmin
H̃2w̃

∥∥∥∥ ≤ rminH̃1w̃ − 1 .
(45)



A Second-Order Cone Bounding Algorithm 239

When robust interference rejection is needed, the constraints in (42) and (44)
can be appended to the constraint list in (45) as:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∥∥∥ rmax
λmin

H̃l2w̃
∥∥∥ ≤ −rmaxH̃l1w̃ + ξl√

2∥∥∥ rmax
λmin

H̃l2w̃
∥∥∥ ≤ rmaxH̃l1w̃ + ξl√

2∥∥∥ rmax
λmin

J̃l2w̃
∥∥∥ ≤ −rmaxJ̃l1w̃ + ξl√

2∥∥∥ rmax
λmin

J̃l2w̃
∥∥∥ ≤ rmaxJ̃l1w̃ + ξl√

2

(46)

for l = 1, 2, · · · , L. SOCP solvers utilizing interior-point algorithms, e.g., [25,26],
can then be used to solve for the weights of this SOC RMV beamformer. The
complexity of each iteration step is O(N3), and because the number of iter-
ations is typically around ten, the complexity of this SOCP solver approach
is still O(N3). Another way of solving (45), possibly with (46), is by the La-
grange multiplier method [4, 6] whose complexity is also O(N3). However, for
each low-rank update of R̃x, the latter approach allows update of the weight
design problem with a complexity of only O(N2), while the former approach
requires recomputation every time [6].

Three additional comments are in order:

1. The final SOCP problem of the proposed beamformer is of the same order
as other robust schemes in [3, 4, 5, 6, 7] using other uncertainty bounding
geometries. However, in the SOCP problem setup, finding the hypersphere,
flat ellipsoid, or the SOC (centroid approach) that enclose the uncertainty
set all require O(N) work. In contrast, finding the tightest SOC (optimal
approach) and the minimum volume ellipsoid [4], provided SOCP and SDP
solvers are used respectively, would require O(ρN3) and O(ρN4) work in
every iteration (e.g., [22]), where ρ is proportional to the number of vertices in
the uncertainty set. Consequently, the first three schemes are more practical
when computational speed is of concern or array size is large.

2. If irregular, arbitrary-shape (but convex) polytopes are used to model the
uncertainty set, the maximum λmin can be obtained in the following way:
First, find the minimum enclosing sphere (MES) of all points ṽ/ ‖ṽ‖ (ṽ ∈ Ω̃′

or Ω̃′
l) on the unit sphere, which can again be cast as a standard SOCP

problem:

min(radius) subject to
‖pointi − center‖ ≤ radius, ∀pointi ,

(47)

or solved using other techniques such as the Welzl’s algorithm [30] in lin-
ear time. Then c̃ is simply the unit vector pointing towards the center of
this MES, while λmin, rmin, and rmax are immediately inferred from the in-
tersection of this MES and the unit sphere. The major difficulty with this
approach, however, is the poor scalability due to the exponential increase in
the number of hull vertices.
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3. The proposed SOC RMV beamforming approach does not require the an-
tenna array to be linear as no special restrictions are placed on the steering
vectors. RMV beamforming for general non-uniform arrays with different
element patterns still proceed in the same way. The proposed SOC bound-
ing scheme also provides a deterministic and systematic way to construct
the optimization constraints given the tolerance in AOA and array ampli-
fiers. Due to the SOCP formulation of the beamforming problem, additional
requirements like power restriction on the antenna weights and beampat-
tern tuning [9] are readily incorporated. Furthermore, simple and tight un-
certainty modeling with the centroid approach enables real-time setup and
computation in adaptive arrays.

4 Numerical Examples

The first example studies a 5-element uniform array separated by half wave-
lengths. We start with a simple case of no interfering signal. Suppose a far-field
narrowband signal of unit-power is impinging on the array. The signal AOA is
+20o with an uncertainty of ±2.5o. The SNR is 10 dB and the noise is white
Gaussian and uncorrelated with the signal. The array amplifiers are of unity gain
with an uncertainty of ±0.05 and a phase uncertainty of ±3o. The traditional
non-robust Capon MV [1], and the robust hypersphere [3], full (nondegenerate)
ellipsoid [4], flat (degenerate) ellipsoid [6], as well as the proposed beamformers
are designed accordingly. The hyperspherical and the full ellipsoidal uncertainty
bounding schemes are designed such that the annulus sector (Fig. 2) of each
steering vector component is bounded within the uncertainty set. The hyper-
sphere radius thus calculated is 0.8287. The flat ellipsoidal bounding is designed
in a way as in [6], in which a “rank-two” flat ellipsoid is formed such that the
steering vectors at the two uncertain AOA extremes are within the ellipsoid.
Note that a flat ellipsoid assumes certain linear combinations of uncertainty [4]
and may not include all steering vector combinations as in other robust schemes.
In the proposed SOC RMV scheme, the optimal and the centroid methods give
almost the same SOC, parameterized by λmin = 2.3783 and rmin = 1.9922 for
the centroid approach, and λmin = 2.4345 and rmin = 1.9822 for the optimal
approach. Fig. 5 shows the performance of various beamformers against AOA
mismatch. As expected, the proposed SOC RMV beamformers corresponding
to the centroid and optimal methods perform virtually the same, and thus only
the one from centroid method is shown. The results are based on the theoretical
covariance matrix, i.e., M → ∞ in (7), e.g., see [6]. Fig. 5(a) shows that the pro-
posed and the hypersphere schemes give the best SINR robustness, with their
peak SINRs being comparable to the peak value of the Capon MV beamformer.
The full and flat ellipsoid schemes have lower SINR performance but it improves
when the mismatch is near the extremes. Not surprisingly, the Capon MV beam-
former suffers from an abrupt decrease in SINR when the actual AOA deviates
from the nominal one. Fig. 5(b) shows that the flat ellipsoidal bounding method
produces the tightest results (gain ≥ 1) with respect to the specified range of
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uncertainty, while the hypersphere bounding method results in an “over-design”
due to its inherently conservative nature. The proposed and the full ellipsoid
schemes are much tighter compared to the hypersphere scheme. Fig. 5(c) inves-
tigates the accuracy of the signal power estimation, with the estimate from (18)
being used for the Capon MV beamformer, and (19) being employed for the
other schemes. Consistent with the results in [6], the flat ellipsoid scheme pro-
duces the most accurate estimate (0 dB) over the uncertainty range, while the
proposed beamformer performs similarly to the hypersphere scheme. A major
drawback of the hypersphere method is the increased power metric, proportional
to ‖w‖2 (see (21)) as illustrated in Fig. 5(d), that may cause the design to be
practically infeasible. In contrast, the proposed beamformer shows a value close
to the optimal value of the Capon MV beamformer. The performance of other
robust schemes are in between. Next, we consider the convergence rate of signal
power estimation when the sample covariance matrix is used. The results are
plotted against the number of snapshots (M in (7)) in Fig. 6. Under this case
of no interference, the convergence rates of all robust schemes are basically the
same. Fig. 6(a) shows the power estimation in the absence of AOA mismatch,
while Fig. 6(b) demonstrates how AOA mismatch can deteriorate the estimation
accuracy of the Capon MV beamformer.

The second example considers a 10-element uniform array separated by half
wavelengths. The unit-power signal has an AOA of +10o±2.5o. Four interference
signals of power 6 dB lower than the signal power are coming from −70o, −30o,
+50o, and +70o. The noise and amplifier tolerance are the same as in the previous
example. The proposed beamformer designed with the centroid and optimal
approaches are again similar (λmin = 0.6054 and rmin = 2.2699 for the centroid
approach, and λmin = 0.6271 and rmin = 2.1519 for the optimal approach) and
only the results from the centroid approach are shown. The hypersphere radius
in this case is 2.3847. The full ellipsoidal bounding scheme is not implemented
due to its high computational complexity. Fig. 7 shows similar observations for
various schemes as in Fig. 5. However, in Fig. 7(c), it can be seen that the power
estimation accuracy of the flat ellipsoid scheme is strongly dependent on the
actual AOA mismatch. As shown in Fig. 7(d), the variation in the power metric
of different schemes is much larger due to the increased number of antennae.
It can be seen that the proposed scheme maintains a near-optimal value over
the whole uncertainty range. Fig. 8 further reveals that in terms of signal power
estimation, the proposed scheme enjoys the fastest convergence among others.
In fact, our numerical experiments show that the proposed scheme consistently
gives the fastest convergence.

Next, consider a case with a unit-power signal of AOA +10o ± 1.2o. There
are two unit-power interference signals from −30o ± 0.1o and +50o ± 0.1o. The
noise assumption is as before and the amplifier gain and phase uncertainties are
±0.05 and ±0.1o respectively. To address the issues of amplifier and interference
uncertainties, we carry out robust interference rejection as discussed in Sect. 2.3.
It is required that the signal gain be at least 20 dB higher than that of the inter-
fering signals (i.e., ξ1, ξ2 < 0.1). Fig. 9 shows 1000 random beampatterns for the
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Fig. 5. (a)-(d). Performance of a 5-element array against AOA mismatch: Capon
MV (CAP), hypersphere (SPH), full ellipsoid (ELP), flat ellipsoid (FELP), and
the proposed (SOC) beamformers. The two vertical solid lines in each plot denote
the AOA uncertainty range

Capon MV and the proposed SOC RMV beamformers (centroid approach) in
which the signal AOA, interfering signal angles, and amplifier gains and phases
vary randomly within their specified uncertainty ranges. The Capon MV beam-
former is designed with the point nulling constraints embedded in (12), and
the proposed beamformer is designed by incorporating (46) into (45). It can be
seen that the worst-case performance of the Capon MV beamformer is severely
degraded: the overall gain is significantly higher, admitting more noise and in-
terference power to degrade the SINR and accuracy of signal power estimation.
In contrast, the proposed scheme performs favorably against uncertainties and
the beampatterns remain almost invariant. It should be noted that under these
design criteria, modeling steering vector uncertainties of the desired and inter-
fering signals using hyperspheres has rendered the SOCP problem infeasible.
Table 1 gives the figures of merits for various schemes under the signal, inter-
ference, and implementation uncertainties. Specifically, the antenna weights are
designed with a covariance matrix arising from a random set of data in the
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Fig. 6. Signal power estimation for a 5-element array using sample covariance
matrix: (a) no AOA mismatch. (b) 2.5o AOA mismatch. Each data point is the
average of 100 Monte Carlo simulations. Featured designs: Capon MV (CAP),
hypersphere (SPH), full ellipsoid (ELP), flat ellipsoid (FELP), and the proposed
(SOC) beamformers

uncertainty set, and then the performance of the array is measured subject to
another random set of data from the uncertainty set. The results are averaged
over 1000 Monte Carlo simulations. It is seen that the flat ellipsoid scheme, with
its simplified uncertainty structure assumption, is most susceptible to amplifier
parameter variations. While the proposed scheme with robust interference rejec-
tion delivers the highest SINR, most accurate power estimation, and low power
metric. Finally, given the fact that SOC RMV beamformers resulting from the
optimal method and the centroid method perform almost identically, the use of
the centroid approximation in all practical cases is well justified.

Table 1. Figures of merits for different schemes under signal, interference, and
implementation uncertainties. 1000 Monte Carlo simulations are averaged for
each entry (RIR stands for robust interference rejection)

Power(W) SINR(dB) Power Estimate(dB)

Capon 1.9840 6.0621 -2.9282

Hypersphere 0.2597 18.9755 0.0768

Flat Ellipsoid 0.6754 11.7388 -0.2191

Proposed(centroid, no RIR) 0.1249 16.7159 0.1421

Proposed(optimal, no RIR) 0.1261 16.5128 0.1458

Proposed(centroid with RIR) 0.1380 19.8219 0.0515
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Fig. 7. Performance of a 10-element array against AOA mismatch: Capon MV
(CAP), hypersphere (SPH), flat ellipsoid (FELP), and the proposed (SOC)
beamformers. The two vertical solid lines in each plot denote the AOA un-
certainty range

5 Conclusion

This paper has presented an efficient geometrical approach for designing RMV
beamformers utilizing SOC uncertainty bounding. The algorithm exploits the
convexity of the optimization constraints and reduces the dimension of the op-
timization process from a convex hull (covering the uncertainty set) to the cir-
cumference of a hyperellipse outside the hull. Extension of this idea to robust
interference rejection has been illustrated. Its application has been demonstrated
through a generic example of modeling array uncertainties using complex-plane
trapezoids. The beamforming task has been transformed into an SOCP problem
that can be efficiently solved using either interior point algorithms or the La-
grange multiplier method. Simplification of the proposed scheme using a centroid
heuristics and its extension to arbitrary uncertainty geometries have also been
discussed. Numerical examples have confirmed that the proposed SOC RMV
beamformer exhibits high computational efficiency, better tightness, power re-
quirement, and convergence in signal power estimation over other schemes.
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Fig. 9. (a) & (b). 1000 random beampatterns of a 10-element array featuring
the Capon MV beamformer (with point interference rejection) and the proposed
beamformer (with robust interference rejection), interference signals being at
−30o, +50o. Dotted envelope in (b) shows the maximum gain recorded in (a)
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Abstract. We consider a linear system, such as an estimator or a con-
troller, in which several signals are transmitted over wireless commu-
nication channels. With the coding and medium access schemes of the
communication system fixed, the achievable bit rates are determined by
the allocation of communications resources such as transmit powers and
bandwidths, to different channels. Assuming conventional uniform quan-
tization and a standard white-noise model for quantization errors, we
consider two specific problems. In the first, we assume that the linear
system is fixed and address the problem of allocating communication re-
sources to optimize system performance. We observe that this problem
is often convex (at least, when we ignore the constraint that individual
quantizers have an integral number of bits), hence readily solved. We
describe a dual decomposition method for solving these problems that
exploits the problem structure. We briefly describe how the integer bit
constraints can be handled, and give a bound on how suboptimal these
heuristics can be. The second problem we consider is that of jointly allo-
cating communication resources and designing the linear system in order
to optimize system performance. This problem is in general not convex.
We present an iterative heuristic method based on alternating convex
optimization over subsets of variables, which appears to work well in
practice.

1 Introduction

We consider a linear system in which several signals are transmitted over wire-
less communication links, as shown in figure 1. All signals are vector-valued: w
is a vector of exogenous signals (such as disturbances or noises acting on the
system); z is a vector of performance signals (including error signals and actu-
ator signals); and y and yr are the signals transmitted over the communication
network, and received, respectively. This general arrangement can represent a
variety of systems, for example a controller or estimator in which sensor, ac-
tuator, or command signals are sent over wireless links. It can also represent a
distributed controller or estimator, in which some signals (i.e., inter-process com-
munication) are communicated across a network. In this paper, we address the
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problem of optimizing the stationary performance of the linear system by jointly
allocating resources in the communication network and tuning the parameters
of the linear system.

LTI System

Network

Communication

w z

yyr

LTI System

w z

y1yr1

yMyrM

Fig. 1: System set-up (left) and uniform quantization model (right).

Many issues arise in the design of networked controllers and the associated
communication systems, including bit rate limitations [WB99, NE00, TSM98],
communication delays [NBW98], data packet loss [XHH00], transmission errors
[SSK99], and asynchronicity [Özg89]. In this paper we consider only the first is-
sue, i.e., bit rate limitations. In other words, we assume that each communication
link has a fixed and known delay (which we model as part of the LTI system),
does not drop packets, transfers bits without error, and operates (at least for
purposes of analysis) synchronously with the discrete-time linear system.

The problem of control with bit-rate limitations has achieved a lot of atten-
tion recently. Much of the research has concentrated on joint design of con-
trol and coding to find the minimum bit rate required to stabilize a linear
system. For example, [WB99] and [NE98] established various closed-loop sta-
bility conditions involving the feedback data rate and eigenvalues of the open-
loop system, while [BM97, TSM98] studied control with communication con-
straints within the classical linear quadratic Gaussian framework. Closely re-
lated is also the research on control with quantized feedback information, see
[Cur70, Del90, KH94, BL00, EM01].

Our focus is different. We assume that the source coding, channel coding
and medium access scheme of the communication system are fixed and concen-
trate on finding the allocation of communications resources (such as transmit
powers and bandwidths) and linear system parameters that yields the optimal
closed-loop performance. For a fixed sampling frequency of the linear system,
the limit on communication resources translates into a constraint on the num-
ber of bits that can be transmitted over each communication channel during
one sampling period. We assume that the individual signals yi are coded using
conventional memoryless uniform quantizers, as shown in figure 1. This coding
scheme is certainly not optimal (see, e.g., [WB97, NE98]), but it is conventional,
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easily implemented, and leads to a simple model of how the system performance
depends on the bit-rates. In particular, by imposing lower bounds on the number
of quantization bits, we ensure that data rates are high enough for stabilization
and that the white-noise model for quantization errors introduced by Widrow
(see [WKL96] and the references therein) is valid. This approach has clear links
to the research in the signal processing literature on allocation of bits in linear
systems with quantizers. The main effort of that research has been to derive
analysis and design methods for fixed-point filter and controller implementa-
tions, (see [Wil85, WK89, SW90]). However, joint optimization of communica-
tions resource allocation and linear system design, interacting through bit rate
limitations and quantization, has not been addressed in the literature before.
Even in the simplified setting under our assumptions, the joint optimization
problem is quite nontrivial and its solution requires concepts and techniques
from communication, control, and optimization.

We address to specific problems in this paper. First, we assume the linear
system is fixed and consider the problem of allocating communication resources
to optimize the overall system performance. We observe that this problem is
often convex, provided we ignore the constraint that the number of bits for each
quantizer is an integer. This means that these communication resource allocation
problems can be solved efficiently, using a variety of convex optimization tech-
niques. We describe a general approach for solving these problems based on dual
decomposition. The method results in very efficient procedures for solving for
many communication resource allocation problems, and reduces to well known
water-filling in simple cases. We also show several methods that can be used to
handle the integrality constraint. The simplest is to round down the number of
bits for each channel to the nearest integer. We show that this results in an allo-
cation of communication resources that is feasible, and at most a factor of two
suboptimal in terms of the RMS (root-mean-square) value of critical variable
z. We also describe a simple and effective heuristic that often achieves perfor-
mance close to the bound obtained by solving the convex problem, ignoring the
integrality constraints.

The second problem we consider is the problem of jointly allocating commu-
nication resources and designing the linear system in order to optimize perfor-
mance. Here we have two sets of design variables: the communication variables
(which indirectly determine the number of bits assigned to each quantizer), and
the controller variables (such as estimator or controller gains in the linear sys-
tem). Clearly the two are strongly coupled, since the effect of quantization errors
depends on the linear system, and similarly, the choice of linear system will affect
the choice of communication resource allocation. We show that this joint prob-
lem is in general not convex. We propose an alternating optimization method
that exploits problem structure and appears to work well in practice.

The paper is organized as follows. In §2, we describe the linear system and our
model for the effect of uniform quantization error on overall system performance.
In §3, we describe a generic convex model for the bit rate limitations imposed
by communication systems, and describe several examples. In §4, we formulate
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the communication resource allocation problem for fixed linear systems, describe
the dual decomposition method which exploits the separable structure, and give
a heuristic rounding method to deal with the integrality of bit allocations. In §5,
we demonstrate the nonconvexity of the joint design problem, and give a iterative
heuristic to solve such problems. Two examples, a networked linear estimator
and a LQG control system over communication networks, are used to illustrate
the optimization algorithms in §4 and §5. We conclude the paper in §6.

2 Linear System and Quantizer Model

2.1 Linear System Model

To simplify the presentation we assume a synchronous, single-rate discrete-time
system. The linear time-invariant (LTI) system can be described as

z = G11(ϕ)w + G12(ϕ)yr, y = G21(ϕ)w + G22(ϕ)yr, (1)

where Gij are LTI operators (i.e., convolution systems described by transfer
or impulse matrices). Here, ϕ ∈ Rq is the vector of design parameters in the
linear system that can be tuned or changed to optimize performance. To give
lighter notation, we suppress the dependence of Gij on ϕ except when necessary.
We assume that y(t), yr(t) ∈ RM , i.e., the M scalar signals y1, . . . , yM are
transmitted over the network during each sampling period.

We assume that the signals sent (i.e., y) and received (i.e., yr) over the
communication links are related by memoryless scalar quantization, which we
describe in detail in the next subsections. This means that all communication
delays are assumed constant and known, and included in the LTI system model.

2.2 Quantization Model

Unit Uniform Quantizer A unit range uniform bi-bit quantizer partitions
the range [−1, 1] into 2b

i intervals of uniform width 21−bi . To each quantization
interval a codeword of b bits is assigned. Given a received codeword, the input
signal yi is approximated by (or reconstructed as) yr, the midpoint of the in-
terval. As long as the quantizer does not overflow (i.e., as long as |yi| ≤ 1), the
relationship between original and reconstructed values can be expressed as

Qbi(yi) =
round(2bi−1yi)

2bi−1

and the quantization error yri − yi lies in the interval ±2−bi.
The behavior of the quantizer when yi overflows (i.e., |yi| > 1) is not specified.

One approach is to introduce two more codewords, corresponding to negative and
positive overflow, respectively, and to extend Qbi to saturate for |yi| ≥ 1. The
details of the overflow behavior will not affect our analysis or design, since we
assume by appropriate scaling (described below) that overflow does not occur,
or occurs rarely enough to not affect overall system performance.
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Scaling To avoid overflow, each signal yi(t) is scaled by the factor s−1
i > 0 prior

to encoding with a unit uniform bi-bit quantizer, and re-scaled by the factor si

after decoding (figure 2), so that

yri(t) = siQbi(yi(t)/si).

The associated quantization error is given by

qi(t) = yri(t) − yi(t) = siEbi(yi(t)/si),

which lies in the interval ±si2−bi , provided |yi(t)| < si.

yi yri

[−1, 1]

1

si

si

Fig. 2: Scaling before and after the quantizer.

To minimize quantization error while ensuring no overflow (or ensuring that
overflow is rare) the scale factors si should be chosen as the maximum possible
value of |yi(t)|, or as a value that with very high probability is larger than |yi(t)|.
For example, we can use the so-called 3σ-rule,

si = 3 rms(yi),

where rms(yi) denotes the root-mean-square value of yi,

rms(yi) =
(

lim
t→∞E yi(t)2

)1/2

.

If yi has a Gaussian amplitude distribution, this choice of scaling ensures that
overflow occurs only about 0.3% of the time.

White-Noise Quantization Error Model We adopt the standard stochas-
tic quantization noise model introduced by Widrow (see, e.g., [FPW90, Chap-
ter 10]). Assuming that overflow is rare, we model the quantization errors qi(t)
as independent random variables, uniformly distributed on the interval

si[−2−bi , 2−bi ].

In other words, we model the effect of quantizing yi(t) as an additive white noise
source qi(t) with zero mean and variance E qi(t)2 = (1/3)s2

i 2
−2bi , see figure 3.

When allocating bits to quantizers, we will impose a lower bound on each bi.
This value should be high enough for stabilizing the closed-loop system (cf.
[WB99, NE00]) and make the white noise model a reasonable assumption in a
feedback control context (cf. [WKL96, FPW90]).
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Fig. 3: LTI system with white noise quantization noise model.

2.3 Performance of the Closed-Loop System

We can express z and y in terms of the inputs w and q as

z = Gzww + Gzqq, y = Gyww + Gyqq,

where Gzw, Gzq, Gyw and Gyq are the closed-loop transfer matrices from w and
q to z and y, respectively. From the expression for z, we see that it consists of
two terms: Gzww, which is what z would be if the quantization were absent, and
Gzqq, which is the component of z due to the quantization. The variance of z
induced by the quantization is given by

Vq = E ‖Gzqq‖2 =
M∑
i=1

‖Gzqi‖2

(
1
3
s2

i 2
−2bi

)
(2)

where Gzqi is the ith column of the transfer matrix Gzq, and ‖ · ‖ denotes
the L2 norm (see [BB91, §5.2.3]). We can use Vq as a measure of the effect
of quantization on the overall system performance. If w is also modeled as a
stationary stochastic process, the overall variance of z is given by

V = E ‖z‖2 = Vq + E ‖Gzww‖2. (3)

The above expression shows how Vq depends on the allocation of quantizer bits
b1, . . . , bM , as well as the scalings s1, . . . , sM and LTI system (which affect the
ai’s). Note that while the formula (2) was derived assuming that bi are integers,
it makes sense for bi ∈ R.

3 Communications Model and Assumptions

3.1 A Generic Model for Bit Rate Constraints

The capacity of communication channels depend on the media access scheme
and the selection of certain critical parameters, such as transmission powers and
bandwidths or time-slot fractions allocated to individual channels (or groups of
channels). We refer to these critical communication parameters collectively as
communication variables, and denote the vector of communication variables by θ.
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The communication variables are themselves limited by various resource con-
straints, such as limits on the total power or total bandwidth available. We will
assume that the medium access methods and coding and modulation schemes are
fixed, but that we can optimize over the underlying communication variables θ.

We let b ∈ RM denote the vector of bits allocated to each quantized signal.
The associated communication rate ri (in bits per second) can be expressed as
bi = αri, where the constant α has the form α = cs/fs. Here fs is the sample
frequency, and cs is the channel coding efficiency in source bits per transmission
bit. This relationship will allow us to express capacity constraints in terms of
bit allocations rather than communication rates.

We will use the following general model to relate the vector of bit allocations
b, and the vector of communication variables θ:

fi(b, θ) ≤ 0, i = 1, . . . , mf

hT
i θ ≤ di, i = 1, . . . , mh

θi ≥ 0, i = 1, . . . , mθ

bi ≤ bi ≤ bi, i = 1, . . . , M

(4)

We make the following assumptions about this generic model.

– The functions fi are convex functions of (b, θ), monotone increasing in b and
monotone decreasing in θ. These inequalities describe capacity constraints
on the communication channels. We will show below that many classical
capacity formula satisfy these assumptions.

– The second set of constraints describes resource limitations, such as a total
available power or bandwidth for a group of channels. We assume the vectors
hi have nonnegative entries. We assume that di, which represent resource
limits, are positive.

– The third constraint specifies that the communication resource variables
(which represent powers, bandwidths, time-slot fractions) are nonnegative.

– The last group of inequalities specify lower and upper bounds for each bit
allocation. We assume that bi and bi are (nonnegative) integers. The lower
bounds are imposed to ensure that the white noise model for quantization
errors is reasonable. The upper bounds can arise from hardware limitations.

This generic model will allow us to formulate the communication resource al-
location problem, i.e., the problem of choosing θ to optimize overall system
performance, as a convex optimization problem.

There is also one more important constraint on b not included above:

bi is an integer, i = 1 . . . , M. (5)

For the moment, we ignore this constraint. We will return to it in §4.2.

3.2 Capacity Constraints

In this section, we describe some simple channel models and show how they fit
the generic model (4) given above. More detailed descriptions of these channel
models, as well as derivations, can be found in, e.g., [CT91, Gol99].
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Gaussian Channel We start by considering a single Gaussian channel. The
communication variables are the bandwidth W > 0 and transmission power
P > 0. Let N be the power spectral density of the additive white Gaussian noise
at the front-end of the receiver. The channel capacity is given by ([CT91])

R = W log2

(
1 +

P

N W

)
(in bits per second). The achievable communication rate r is bounded by this
channel capacity, i.e., we must have r ≤ R. Expressed in terms of b, we have

b ≤ αW log2

(
1 +

P

NW

)
. (6)

We can express this in the form

f(b, W, P ) = b − αW log2

(
1 +

P

NW

)
≤ 0,

which fits the generic form (4). To see that the function f is jointly convex in
the variables (b, W, P ), we note that the function g(P ) = −α log2(1 + P/N) is a
convex function of P and, therefore its perspective function (see [BV04])

Wg(P/W ) = −αW log2

(
1 +

P

NW

)
is a convex function of (P, W ). Adding the linear (hence convex) function b
establishes convexity of f . It is easily verified that f is monotone increasing in
b, and monotone decreasing in W and P .

Gaussian Broadcast Channel with FdMA In the Gaussian broadcast chan-
nel with frequency-domain multiple access (FDMA), a transmitter sends infor-
mation to n receivers over disjoint frequency bands with bandwidths Wi > 0.
The communication parameters are the bandwidths Wi and the transmit powers
Pi > 0 for each individual channel. The communication variables are constrained
by a total power limit

P1 + · · · + Pn ≤ Ptot

and a total available bandwidth limit

W1 + · · · + Wn ≤ Wtot,

which have the generic form for communication resource limits.
The receivers are subject to independent white Gaussian noises with power

spectral densities Ni. The transmitter assigns power Pi and bandwidth Wi to
the ith receiver. The achievable bit rates b are constrained by

bi ≤ αWi log2

(
1 +

Pi

NiWi

)
, i = 1, . . . , n. (7)

Again, the constraints relating b and θ = (P, W ) have the generic form (4).
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Gaussian Multiple Access Channel with FDMA In a Gaussian multiple
access channel with FDMA, n transmitters send information to a common re-
ceiver, each using a transmit power Pi over a bandwidth Wi. It has the same
set of constraints as for the broadcast channel, except that Ni = N , i = 1, . . . , n
(since they have a common receiver).

Variations and Extensions The capacity formulas for many other channel
models, including the Parallel Gaussian channel, Gaussian broadcast channel
with TDMA and the Gaussian broadcast channel with CDMA, are also concave
in communications variables and can be included in our framework. It is also
possible to combine the channel models above to model more complex commu-
nication systems. Finally, channels with time-varying gain variations (fading) as
well as rate constraints based on bit error rates (with or without coding) can be
formulated in a similar manner; see, e.g., [LG01, CG01].

4 Optimal Resource Allocation for Fixed Linear System

In this section, we assume that the linear system is fixed and consider the prob-
lem of choosing the communication variables to optimize the system perfor-
mance. We take as the objective (to be minimized) the variance of the perfor-
mance signal z, given by (3). Since this variance consists of a fixed term (related
to w) and the variance induced by the quantization, we can just as well minimize
the variance of z induced by the quantization error, i.e., the quantity Vq defined
in (2). This leads to the optimization problem

minimize
∑M

i=1 ai2−2bi

subject to fi(b, θ) ≤ 0, i = 1, . . . , mf

hT
i θ ≤ di, i = 1, . . . , mh

θi ≥ 0, i = 1, . . . , mθ

bi ≤ bi ≤ bi, i = 1, . . . , M

(8)

where ai = (1/3)‖Gzqi‖2s2
i , and the optimization variables are θ and b. For the

moment we ignore the constraint that bi must be integers.
Since the objective function, and each constraint function in the problem (8)

is a convex function, this is a convex optimization problem. This means that it
can be solved globally and efficiently using a variety of methods, e.g., interior-
point methods (see, e.g., [BV04]). In many cases, we can solve the problem (8)
more efficiently than by applying general convex optimization methods by ex-
ploiting its special structure. This is explained in the next subsection.

4.1 The Dual Decomposition Method

The objective function in the communication resource allocation problem (8) is
separable, i.e., a sum of functions of each bi. In addition, the constraint func-
tions fk(b, θ) usually involve only one bi, and a few components of θ, since the
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channel capacity is determined by the bandwidth, power, or time-slot fraction,
for example, allocated to that channel. In other words, the resource allocation
problem (8) is almost separable; the small groups of variables (that relate to a
given link or channel) are coupled mostly through the resource limit constraints
hT

i θ ≤ di. These are the constraints that limit the total power, total bandwidth,
or total time-slot fractions.

This almost separable structure can be efficiently exploited using a technique
called dual decomposition (see, e.g., [BV04, Ber99]). We will explain the method
for a simple FDMA system to keep the notation simple, but the method applies to
any communication resource allocation problem with almost separable structure.
We consider an FDMA system with M channels, and variables P ∈ RM and
W ∈ RM , with a total power and a total bandwidth constraint. We will also
impose lower and upper bounds on the bits. This leads to

minimize
∑M

i=1 ai2−2bi

subject to bi ≤ αWi log2(1 + Pi/NiWi), i = 1, . . . , M
Pi ≥ 0, i = 1, . . . , M∑M

i=1 Pi ≤ Ptot

Wi ≥ 0, i = 1, . . . , M∑M
i=1 Wi ≤ Wtot

bi ≤ bi ≤ bi, i = 1, . . . , M.

(9)

Here Ni is the receiver noise spectral density of the ith channel, and bi and bi

are the lower and upper bounds on the number of bits allocated to each channel.
Except for the total power and total bandwidth constraint, the constraints are
all local, i.e., involve only bi, Pi, and Wi.

We first form the Lagrange dual problem, by introducing Lagrange multipli-
ers but only for the two coupling constraints. The Lagrangian has the form

L(b, P, W, λ, μ) =
M∑
i=1

ai2−2bi + λ

(
M∑
i=1

Pi − Ptot

)
+ μ

(
M∑
i=1

Wi − Wtot

)
.

The dual function is defined as

g(λ, μ) = inf
{
L | Pi ≥ 0, Wi ≥ 0, bi ≤ bi ≤ bi, bi ≤ αWi log2(1 + Pi/NiWi)

}
=

M∑
i=1

gi(λ, μ) − λPtot − μWtot

where

gi(λ, μ) = inf
{
ai2−2bi + λPi + μWi

∣∣∣
Pi ≥ 0, Wi ≥ 0, bi ≤ bi ≤ bi, bi ≤ αWi log2(1 + Pi/NiWi)

}
.

Finally, the Lagrange dual problem associated with the communication re-
source allocation problem (9) is given by

maximize g(λ, μ)
subject to λ ≥ 0, μ ≥ 0.

(10)
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This problem has only two variables, namely the variables λ and μ associated
with the total power and bandwidth limits, respectively. It is a convex optimiza-
tion problem, since g is a concave function (see [BV04]). Assuming that Slater’s
condition holds, the optimal value of the dual problem (10) and the primal prob-
lem (9) are equal. Moreover, from the optimal solution of the dual problem, we
can recover the optimal solution of the primal. Suppose (λ�, μ�) is the solution
to the dual problem (10), then the primal optimal solution is the minimizer
(b�, P �, W �) when evaluating the dual function g(λ�, μ�). In other words, we
can solve the original problem (9) by solving the dual problem (10).

The dual problem can be solved using a variety of methods, for example,
cutting-plane methods. To use these methods we need to be able to evaluate the
dual objective function, and also obtain a subgradient for it (see [BV04]), for
any given μ ≥ 0 and λ ≥ 0. To evaluate g(λ, μ), we simply solve the M separate
problems,

minimize ai2−2bi + λPi + μWi

subject to Pi ≥ 0, Wi ≥ 0,

bi ≤ bi ≤ bi,
bi ≤ αWi log2(1 + Pi/NiWi),

each with three variables, which can be carried out separately or in parallel.
Many methods can be used to very quickly solve these small problems.

A subgradient of the concave function g at (λ, μ) is a vector h ∈ R2 such
that

g(λ̃, μ̃) ≤ g(λ, μ) + hT

[
λ̃ − λ
μ̃ − μ

]
for all λ̃ and μ̃. To find such a vector, let the optimal solution to the subproblems
be denoted

b�
i (λ, μ), P �

i (λ, μ), W �
i (λ, μ).

Then, a subgradient of the dual function g is readily given by[∑M
i=1 P �

i (λ, μ) − Ptot∑M
i=1 W �

i (λ, μ) − Wtot

]
.

This can be verified from the definition of the dual function.
Putting it all together, we find that we can solve the dual problem in time

linear in M , which is far better than the standard convex optimization methods
applied to the primal problem, which require time proportional to M3.

The same method can be applied whenever there are relatively few coupling
constraints, and each link capacity is dependent on only a few communication
resource parameters. In fact, when there is only one coupling constraint, the sub-
problems that we must solve can be solved analytically, and the master problem
becomes an explicit convex optimization problem with only one variable. It is
easily solved by bisection, or any other one-parameter search method. This is
the famous water-filling algorithm (see, e.g., [CT91]).
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4.2 Integrality of Bit Allocations

We now come back to the requirement that the bit allocations must be integers.
The first thing we observe is that we can always round down the bit allocations
found by solving the convex problem to the nearest integers. Let bi denote the
optimal solution of the convex resource allocation problem (8), and define b̃i =
�bi�. Here, �bi� denotes the floor of bi, i.e., the largest integer smaller than or
equal to bi. First we claim that b̃ is feasible. To see this, recall that fk and hk

are monotone decreasing in b, so since b is feasible and b̃ ≤ b, we have b̃ feasible.
We can also obtain a crude performance bound for b̃. Clearly the objective

value obtained by ignoring the integer constraint, i.e.,

Jcvx =
M∑
i=1

ai2−2bi ,

is a lower bound on the optimal objective value Jopt of the problem with integer
constraints. The objective value of the rounded-down feasible bit allocation b̃ is

Jrnd =
M∑
i=1

ai2−2b̃i ≤
M∑
i=1

ai2−2(bi−1) = 4Jcvx ≤ 4Jopt,

using the fact that b̃i ≥ bi − 1. Putting this together we have

Jopt ≤ Jrnd ≤ 4Jopt,

i.e., the performance of the suboptimal integer allocation obtained by rounding
down is never more than a factor of four worse than the optimal solution. In
terms of RMS, the rounded-down allocation is never more than a factor of two
suboptimal.

Variable Threshold Rounding Of course, far better heuristics can be used
to obtain better integer solutions. Here we give a simple method based on a
variable rounding threshold.

Let 0 < t ≤ 1 be a threshold parameter, and round bi as follows:

b̃i =
{ �bi�, if bi − �bi� ≤ t,
�bi�, otherwise. (11)

Here, �bi� denotes the ceiling of bi, i.e., the smallest integer larger than or equal
to bi. In other words, we round bi down if its remainder is smaller than or equal
to the threshold t, and round up otherwise. When t = 1/2, we have standard
rounding, with ties broken down. When t = 1, all bits are rounded down, as
in the scheme described before. This gives a feasible integer solution, which we
showed above has a performance within a factor of four of optimal. For t < 1
feasibility of the rounded bits b̃ is not guaranteed, since bits can be rounded up.
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For a given fixed threshold t, we can round the bi’s as in (11), and then solve
a convex feasibility problem over the remaining continuous variables θ:

fi(b̃, θ) ≤ 0
hT

i θ ≤ di

θi ≥ 0
(12)

The upper and lower bound constraints bi ≤ b̃i ≤ bi are automatically satisfied
because bi and bi are integers. If this problem is feasible, then the rounded b̃i’s
and the corresponding θ are suboptimal solutions to the integer constrained bit
allocation problem.

Since fi is monotone increasing in b, hence in t, and monotone decreasing in θ,
there exists a t� such that (12) is feasible if t ≥ t� and infeasible if t < t�. In the
variable threshold rounding method, we find t�, the smallest t which makes (12)
feasible. This can be done by bisection over t: first try t = 1/2. If the resulting
rounded bit allocation is feasible, we try t = 1/4; if not, we try t = 3/4, etc.

Roughly speaking, the threshold t gives us a way to vary the conservativeness
of the rounding procedure. When t is near one, almost all bits are rounded down,
and the allocation is likely to be feasible. When t is small, we round many bits
up, and the bit allocation is unlikely to be feasible. But if it is, the performance
(judged by the objective) will be better than the bit allocation found using more
conservative rounding (i.e., with a larger t). A simple bisection procedure can
be used to find a rounding threshold close to the aggressive one that yields a
feasible allocation.

4.3 Example: Networked Linear Estimator

To illustrate the ideas of this section, we consider the problem of designing a
networked linear estimator with the structure shown in figure 4. We want to
estimate an unknown point x ∈ R20 using M = 200 linear sensors,

yi = cT
i x + vi, i = 1, . . . , M.

Each sensor uses bi bits to code its measurements and transmits the coded signal
to a central estimator over a Gaussian multiple access channel with FDMA.
The performance of the estimator is judged by the estimation error variance
JK = E ‖x̂ − x‖2. We assume that ‖x‖ ≤ 1 and that the sensor noises vi are

Channel

Multiple Access
Estimator

x

v

C
Cx

SS−1
y yr x̂

Fig. 4: Networked linear estimator over a multiple access channel

IID with E vi = 0, E v2
i = 10−6. In this example, the sensor coefficients ci are

uniformly distributed on [0, 5]. Since ‖x‖ ≤ 1, we choose scaling factors si = ‖ci‖.
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The noise power density of the Gaussian multiple access channel is N = 0.1,
the coding constant is α = 2, and the upper and lower bounds for bit allocations
are b = 5 and b = 12. The total available power is P = 300 and the total available
bandwidth is W = 200.

The estimator is a linear unbiased estimator

x̂ = Kyr,

where KC = I, with C = [c1, . . . , cM ]T . In particular, the minimum variance
estimator is given by

K =
(
CT (Rv + Rq)−1C

)−1
CT (Rv + Rq)−1 (13)

where Rv and Rq are the covariance matrices for the sensor noises and quan-
tization noises, respectively. (Note that the estimator gain depends on the bit
allocations.) The associated estimation error variance is

JK(b) =
1
3

M∑
i=1

s2
i ‖ki‖22−2bi + Tr

(
KRvK

T
)

where ki is the ith column of the matrix K. Clearly, JK(b) is on the form (3)
and will serve as the objective function for the resource allocation problem (8).

First we allocate power and bandwidth evenly to all sensors, which results
in bi = 8 for each sensor. Based on this allocation, we compute the quantiza-
tion noise variances E q2

i = (1/3)s2
i 2

−2bi and design a least-squares estimator as
in (13). The resulting RMS estimation error is 3.676 × 10−3. Then we fix the
estimator gain K, and solve the relaxed optimization problem (8) to find the
resource allocation that minimizes the estimation error variance. The resulting
RMS value is 3.1438 × 10−3. Finally, we perform a variable threshold rounding
with t� = 0.4211. Figure 5 shows the distribution of rounded bit allocation. The
resulting RMS estimation error is 3.2916 × 10−3. Thus, the allocation obtained
from optimization and variable threshold rounding gives a 10% improved perfor-
mance compared to the unirform resource allocation, which is not very far from
the performance bound given by the relaxed convex optimization problem.

We can see that the allocation obtained from optimization and variable
threshold rounding give a 10% improved performance compared to the uniform
resource allocation, and is not very far from the performance bound given by
the relaxed convex optimization problem.

Note that with the new bit allocations, the quantization covariance changes
— it is not the one that was used to design K. We will address this issue of the
coupling between the choice of the communication variables and the estimator.

5 Joint Design of Communication and Linear Systems

We have seen that when the linear system is fixed, the problem of optimally
allocating communication resources is convex (when we ignore integrality of bit
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Fig. 5: Bit allocation for networked least-squares estimator.

allocations), and can be efficiently solved. In order to achieve the optimal system
performance, however, one should optimize the parameters of the linear system
and the communication system jointly. Unfortunately, this joint design problem
is in general not convex. In some cases, however, the joint design problem is
bi-convex: for fixed resource allocation the controller design problem is convex,
and for fixed controller design and scalings the resource allocation problem is
convex. This special structure can be exploited to develop a heuristic method
for the joint design problem, that appears to work well in practice.

5.1 Nonconvexity of the Joint Design Problem

To illustrate that the joint design problem is nonconvex, we consider the problem
of designing a simple networked least-squares estimator for an example small
enough that we can solve the joint problem globally.

An unknown scalar parameter x ∈ R is measured using two sensors that are
subject to measurement noises:

y1 = x + v1, y2 = x + v2.

We assume that v1 and v2 are independent zero-mean Gaussian random variables
with variances E v2

1 = E v2
2 = 0.001. The sensor measurements are coded and

sent over a communication channel with a constraint on the total bit rate. With
a total of btot bits available we allocate b1 bits to the first sensor and the b2 =
btot − b1 remaining bits to the second sensor. For a given bit allocation, the
minimum-variance unbiased estimate can be found by solving a weighted least-
squares problem. Figure 6 shows the optimal performance as function of b1 when
btot = 8 and btot = 12. The relationship is clearly not convex.

These figures, and the optimal solutions, make perfect sense. When btot = 8,
the quantization noise is the dominant noise source, so one should allocate all 8
bits to one sensor and disregard the other. When btot = 12, the quantization
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Fig. 6: Estimator performance for b1 + b2 = 8 (top) and b1 + b2 = 12 (bottom).

noises are negligible in comparison with the sensor noise. It is then advantageous
to use both sensors (i.e., assign each one 6 bits), since it allows us to average
out the effect of the measurement noises.

5.2 Alternating Optimization for Joint Design

The fact that the joint problem is convex in certain subsets of the variables
while others are fixed can be exploited. For example (and ignoring the integral-
ity constraints) the globally optimal communication variables can be computed
very efficiently, sometimes even semi-analytically, when the linear system is fixed.
Similarly, when the communication variables are fixed, we can (sometimes) com-
pute the globally optimal variables for the linear system. Finally, when the linear
system variables and the communication variables are fixed, it is straightforward
to compute the quantizer scalings using the 3σ-rule. This makes it natural to
apply an approach where we sequentially fix one set of variables and optimize
over the others:

given initial linear system variables φ(0), communication variables θ(0), and
scaling factors s(0).
k := 0
repeat
1. Fix φ(k), s(k), and optimize over θ. Let θ(k+1) be the optimal value.
2. Fix θ(k+1), s(k), and optimize over φ. Let φ(k+1) be the optimal value.
3. Fix φ(k+1), θ(k+1). Let s(k+1) be appropriate scaling factors.

k:=k+1
until convergence
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Many variations on this basic heuristic method are possible. We can, for ex-
ample, add trust region constraints to each of the optimization steps, to limit
the variables changes in each step. Another variation is to convexify (by, for
example, linearizing) the jointly nonconvex problem, and solve in each step us-
ing linearized versions for the constraints and objective terms in the remaining
variables; see, e.g., [HHB99] and the references therein. . We have already seen
how the optimization over θ can be carried out efficiently. In many cases, the
optimization over φ can also be carried efficiently, using, e.g., LQG or some other
controller or estimator design technique.

Since the joint problem is not convex, there is no guarantee that this heuris-
tic converges to the global optimum. On the other hand the heuristic method
appears to work well in practice.

5.3 Example: Networked Linear Estimator

To demonstrate the heuristic method for joint optimization described above,
we apply it to the networked linear estimator described in §4.3. The design of
the linear system and the communication system couple through the weighting
matrix Q in (13). The alternating procedure for this problem becomes

given initial estimator gain K(0) and resource allocations (P (0), W (0), b(0)).
k:=0
repeat
1. Fix estimator gain K(k) and solve the problem (9) to obtain resource

allocation (P (k+1), W (k+1), b(k+1)).

2. Update the covariance matrix R
(k+1)
q and compute new estimator gain

K(k+1) as in (13) using weight matrix Q(k+1) = (Rv + R
(k+1)
q )−1.

k:=k+1
until bit allocation converges.

Note that the scaling factors are fixed in this example, since neither the bit
allocations nor the estimator gain affect the signals that are quantized, hence
the scaling factors.

When we apply the alternating optimization procedure to the example given
in §4.3, the algorithm converges in six iterations, and we obtain very different re-
source allocation results from before. Figure 7 shows the distribution of rounded
bit allocation. This result is intuitive: try to assign as much resources as possible
to the best sensors, and the bad sensors only get minimum number of bits. The
RMS estimation error of the joint design is reduced significantly, 80%, as shown
in Table 1. In this table, rms(e) is the total RMS error, rms(eq) is the RMS
error induced by quantization noise, and rms(ev) is the RMS error induced by
sensor noise.

We can see that joint optimization reduces the estimation errors due to both
quantization and sensor noise. In the case of equal resource allocation, the RMS
error due to quantization is much larger than that due to sensor noise. After
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RMS values equal allocation joint optimization variable threshold rounding

rms(eq) 3.5193 × 10−3 0.3471 × 10−3 0.3494 × 10−3

rms(ev) 1.0617 × 10−3 0.6319 × 10−3 0.6319 × 10−3

rms(e) 3.6760 × 10−3 0.7210 × 10−3 0.7221 × 10−3

Table 1: RMS estimation errors of the networked LS estimator.

the final iteration of the alternating convex optimization, the RMS error due
to quantization is at the same level as that due to sensor noise. Also, because
the in the relaxed problem, most bits are integers (either b = 5 or b = 12; see
Figure 7), variable threshold rounding (which gives t� = 0.6797) does not change
the solution, or the performance, much.
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Fig. 7: Joint optimization of bit allocation and least-squares estimator

5.4 Example: LQG Control over Communication Networks

We now give a more complex example than the simple static, open-loop estimator
described above. The situation is more complicated when the linear system is
dynamic and involves feedback loops closed over the communication links. In
this case, the RMS values of both control signals and output signals change
when we re-allocate communication resources or adjust the controller. Hence,
the alternating optimization procedure needs to include the step that modifies
the scalings.

Basic System Setup First we consider the system setup in figure 8, where no
communication links are included. The linear system has a state-space model

x(t + 1) = Ax(t) + B (u(t) + w(t))
y(t) = Cx(t) + v(t)
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Fig. 8: Closed-loop control system without communication links.

where u(t) ∈ RMu and y(t) ∈ RMy . Here w(t) is the process noise and v(t) is
the sensor noise. Assume that w(t) and v(t) are independent zero-mean white
noises with covariance matrices Rw and Rv respectively.

Our goal is to design the controller that minimizes the RMS value of z = Cx,
subject to some upper bound constraints on the RMS values of the control
signals:

minimize rms(z)
subject to rms(ui) ≤ βi, i = 1, . . . , Mu

(14)

The limitations on the RMS values of the control signals are added to avoid
actuator saturation.

It can be shown that the optimal controller for this problem has the standard
estimated state feedback form,

x̂(t + 1|t) = Ax̂(t|t − 1) + Bu(t) + L (y(t) − Cx̂(t|t − 1))
u(t) = −Kx̂(t|t − 1)

where K is the state feedback control gain and L is the estimator gain, found by
solving the algebraic Riccati equations associated with an appropriately weighted
LQG problem. Finding the appropriate weights, for which the LQG controller
solves the problem (14), can be done via the dual problem; see, e.g., [TM89,
BB91].

Communications Setup We now describe the communications setup for the
example. The sensors send their measurements to a central controller through a
Gaussian multiple access channel, and the controller sends control signals to the
actuators through a Gaussian broadcast channel, as shown in figure 9.

The linear system can be described as

x(t + 1) = Ax(t) + B (u(t) + w(t) + p(t))
yr(t) = Cx(t) + v(t) + q(t),

where p and q are quantization noises due to the bit rate limitations of the
communication channels. Since these are modeled as white noises, we can include
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the quantization noises in the process and measurement noises, by introducing
the equivalent process noise and measurement noise

w̃(t) = w(t) + p(t), ṽ(t) = v(t) + q(t),

with covariance matrices

R
w̃

= Rw + diag

(
s2

a,1

3
2−2ba,1 , . . . ,

s2
a,Mu

3
2−2ba,Mu

)
,

R
ṽ

= Rv + diag

(
s2

s,1

3
2−2bs,1 , . . . ,

s2
s,My

3
2−2bs,My

)
.

(15)

Here ba and bs are number of bits allocated to the actuators and sensors.
The scaling factors can be found from the 3σ-rule, by computing the variance

of the sensor and actuator signals. Hence, given the signal ranges and numbers
of quantization bits, we can calculate R

w̃
and R

ṽ
, and then design a controller

by solving (14). Notice that the signal ranges are determined by the RMS values,
which in turn depend on the controller design. This intertwined relationship will
show up in the iterative design procedures.
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Fig. 9: Closed-loop control system over communication networks.

Iterative Procedure to Design a Controller with Uniform Bit Alloca-
tion First we allocate an equal number of bits to each actuator and sensor. This
means that we assign power and bandwidth (in the case of FDMA) uniformly
across all channels. We design a controller for such uniform resource allocation
via the following iterative procedure (iterate on the scaling factors and the con-
troller):
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given βi = rms(ui) and estimated rms(zj).
repeat
1. Let sa,i = 3 rms(ui) and ss,j = 3 rms(zj), and compute R

w̃
and R

ṽ
as

in (15).
2. Solve problem (14) and compute rms(ui) and rms(zj) of the closed-

loop system.
until stopping criterion is satisfied.

If the procedure converges, the resulting controller variables K and L of this
iterative design procedure will satisfy the constraints on the control signals.

The Alternating Optimization Procedure Our goal here is to do joint
optimization of bit allocation and controller design. This involves an iteration
procedure over controller design, scaling matrices update and bit allocation. The
controller and scaling matrices designed for uniform bit allocation by the above
iteration procedure can serve as a good starting point. Here is the alternating
optimization procedure:

given Rw, Rv, βi = rms(ui) and rms(zj) from the above iteration design
procedure.
repeat
1. Allocate bit rates ba,i, bs,j and communication resources by solving a

convex optimization problem of the form (8).
2. Compute R

w̃
and R

ṽ
as in (15), and find controller variables K and L

by solving (14).
3. Compute closed-loop system RMS values rms(ui) and rms(zj), then

determine the signal ranges sa,i and ss,j by the 3σ rule.
until the RMS values rms(zj) and bit allocation converges.

The convex optimization problem to be solved in step 1 depends on the commu-
nication system setup and resource constraints.

Numerical Example: Control of a Mass-Spring System Now we consider
the specific example shown in figure 10. The position sensors on each mass send
measurements yi = xi +vi, where vi is the sensor noise, to the controller through
a Gaussian multiple access channel using FDMA. The controller receives data
yri = xi+vi+qi, where qi is the quantization error due to bit rate limitation of the
multiple access channel. The controller sends control signals uj to actuators on
each mass through a Gaussian broadcast channel using FDMA. The actual force
acting on each mass is urj = uj +wj +pj, where wj is the exogenous disturbance
force, and pj is the quantization disturbance due to bit rate limitation of the
broadcast channel. The mechanical system parameters are

m1 = 10, m2 = 5, m3 = 20, m4 = 2, m5 = 15, k = 1

The discrete-time system dynamics is obtained using a sampling frequency which
is 5 times faster than the fastest mode of the continuous-time dynamics. The
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Multiple Access Channel
to Collect Sensor Data

Broadcast Channel
to Send Control SignalsController

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5u1 u2 u3 u4 u5

k k k k k

m1 m2 m3 m4 m5

Fig. 10: Series-connected mass-spring system controlled over network.

independent zero mean noises w and v have covariance matrices Rw = 10−6I
and Rv = 10−6I respectively. The actuators impose RMS constraints on the
control signals:

rms(ui) ≤ 1, i = 1, . . . , 5.

For the Gaussian multiple access channel, the noise power density is N = 0.1,
and the total power available is Pmac,tot = 7.5. For the Gaussian broadcast
channel, the noise power density at each user is Ni = 0.1 for all i’s, and the
total power available for all users is Pbc,tot = 7.5. All users of the multiple
access channel and the broadcast channel share a total bandwidth of W = 10.
The proportionality coefficient α in the capacity formula is set to 2. Finally, we
impose a lower bound b = 5 and an upper bound b = 12 on the number of bits
allocated to each quantizer.1

First we allocate power and bandwidth evenly to all sensors and actuators,
which results in a uniform allocation of 8 bits for each channel. We then designed
a controller using the first iteration procedure based on this uniform resource
allocation. This controller yields rms(ui) = 1 for all i’s, and the RMS-values of
the output signal z are listed in Table 2.

Finally, we used the second iteration procedure to do joint optimization of
bit allocation and controller design. The resulting resource allocation after four
iterations is shown in figure 11. It can be seen that more bandwidth, and hence
more bits are allocated to the broadcast channel than to the multiple access

1 To motivate our choice of lower bound on the bit allocations, note that our system
is critically stable and that the lower bound for stabilization given in [WB99, NE00,
TSM98] is zero. In general, if we discretize an open-loop unstable continuous-time
linear system using a sampling rate which is at least twice the largest magnitude of
the eigenvalues (a traditional rule-of-thumb in the design of digital control systems
[FPW90]), then the lower bound given in [WB99, NE00, TSM98] is less than one bit.
The analysis in [WKL96] shows that bi ≥ 3 or 5 is usually high enough for assuming
the white noise model for quantization errors.
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RMS values equal allocation joint optimization variable threshold rounding

rms(z1) 0.1487 0.0424 0.0438
rms(z2) 0.2602 0.0538 0.0535
rms(z3) 0.0824 0.0367 0.0447
rms(z4) 0.4396 0.0761 0.0880
rms(z5) 0.1089 0.0389 0.0346

rms(z) 0.5493 0.1155 0.1258

Table 2: RMS-values of the output signal.
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Fig. 11: Joint optimization of bit rates and linear control system.

channel. This means that the closed-loop performance is more sensitive to the
equivalent process noises than to the equivalent sensor noises. The joint opti-
mization resulted in rms(ui) = 1 for all i’s, and the RMS-values of the output
signal z are listed in Table 2. At each step of the variable threshold rounding, we
check the feasibility of the resource allocation problem. The optimal threshold
found is t� = 0.6150. Then we fix the integer bit allocation obtained with this
threshold, and used the first iteration procedure to design the controller. We see
a 77% reduction in RMS value over the result for uniform bit allocation, and
the performance obtained by variable threshold rounding is quite close to that
of the relaxed non-integer joint optimization.

6 Conclusions

We have addressed the problem of jointly optimizing the parameters of a linear
system and allocating resources in the communication system that is used for
transmitting sensor and actuator information. We considered a scenario where
the coding and medium access scheme of the communication system is fixed,
but the available communications resources, such as transmit powers and band-
widths, can be allocated to different channels in order to influence the achievable
communication rates. To model the effect of limited communication rates on the
performance of the linear system, we assumed conventional uniform quantization
and used a simple white-noise model for quantization errors. We demonstrated
that the problem of allocating communications resources to optimize the sta-
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tionary performance of a fixed linear system (ignoring the integrality constraint)
is often convex, hence readily solved. Moreover, for many important channel
models, the communication resource allocation problem is separable except for
a small number of constraints on the total communication resources. We il-
lustrated how dual decomposition can be used to solve this class of problems
efficiently, and suggested a variable threshold rounding method to deal with the
integrality of bit allocations. The problem of jointly allocating communication
resources and designing the linear system is in general not convex, but is often
convex in subsets of variables while others are fixed. We suggested an iterative
heuristic for the joint design problem that exploits this special structure, and
demonstrated its effectiveness on the two examples: the design of a networked
linear estimator, and the design of a multivariable networked LQG controller.
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for multiobjective LQG control problems. Int. J. Control, 49(2):655–666,
February 1989.

[TSM98] S. Tatikonda, A. Sahai, and S. Mitter. Control of LQG systems under
communication constraints. In Proc. IEEE Conference on Decision and
Control, pages 1165–1170, December 1998.

[WB97] W. S. Wong and R. W. Brockett. Systems with finite communication band-
width constraints I: state estimation problems. IEEE Transactions on Au-
tomatic Control, 42:1294–1299, 1997.

[WB99] W. S. Wong and R. W. Brockett. Systems with finite communication
bandwidth constraints – II: Stabilization with limited information feedback.
IEEE Transactions on Automatic Control, 44:1049–1053, May 1999.

[Wil85] D. Williamson. Finite wordlength design of digital Kalman filters for state
estimation. IEEE Transactions on Automatic Control, 30(10):930–939, Oc-
tober 1985.

[WK89] D. Williamson and K. Kadiman. Optimal finite wordlength linear quadratic
regulation. IEEE Transactions on Automatic Control, 34(12):1218–1228,
December 1989.
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Abstract. In the last few years some articles have emphasized certain
fundamental inconsistencies underlying feedback control theory. The pa-
per of Willems [1] Georgiou and Smith [2], later the works of Makila
[3],[4], of Leithead et al. [5] have stressed the inconsistency of standard
formalisms of linear time-invariant systems when the signals are double
sided and the systems are open loop unstable. We establish a framework
for a consistent time domain and frequency domain representation of dis-
crete time linear time-invariant systems and, furthermore, that supports
the consistent analysis of discrete time linear time-invariant feedback
systems when signals are double sided and the systems are open loop
unstable.

1 Introduction

System theory is applied to many branches of engineering. Recently, the bound-
aries between the traditional disciplines have become blurred with, for example,
the application of control ideas to communication systems such as the internet
and the use of feedback in signal processing. Consequently, the engineering sys-
tems, to which system theory is applied, have become more varied and complex.
The extension of the classes of signals and systems to cater for this trend requires
a careful choice of mathematical formalism. When inadequate, inconsistencies
can arise, see Willems [1], Georgiu and Smith [2], Makila [3], [4] [6],Leithead
et al. [5], Jacob [7]. One such inconsistency, that has recently been discussed
widely, occurs when when double sided signals are considered. A consistent for-
malism for discrete time systems that resolves the inconsistency associated with
stochastic and double sided signals is presented here.

2 Convoluted Double Trouble

In [4], Makila discusses a discrete time, first order convolution system

y(t) = b
∑
j≥0

aj [u(t − j − 1) + v(t − j − 1)] + d(t) (1)

R. Murray-Smith, R. Shorten (Eds.): Switching and Learning, LNCS 3355, pp. 273–289, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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where y is the output, u is the input, and v and d are disturbance or noise
terms. Let b �= 0 and v and d be double sided square summable real sequences
and define q−1 to be the backward shift operator, such that

q−ny(t) = y(t − n)

(1) can be compactly written

y(t) = G(q)[u(t) + v(t)] + d(t)

where
G(q) = bq−1

∑
j≥0

ajq−j

In addition, define X(z) to be the bilateral Z-transform of the square summable
sequence {x(t)} by

X(z) =
∞∑

t=−∞
x(t)z−1

where, of course, z is a complex variable.
Makila proceeds by considering a simple proportional controller for (1), with a
gain k, such that

u(t) = −ky(t)

and continues with a standard z-domain analysis.
Hence, G(z) = bz−1/(1 − az−1); that is the usual transfer function of a first
order system. (1) becomes

Y (z) = G(z)[U(z) + V (z)] + D(z)

where, respectively Y (z), U(z), V (z) and D(z) are the transfer function of y, u,
v and d.
Hence, closing the loop

(1 + kG(z))Y (z) = G(z)V (z) + D(z) (2)

Using standard transform analysis,

Y (z) =
G(z)V (z) + D(z)

1 + kG(z)
(3)

should be stable provided |kb − a| < 1 holds, including of course |kb − a| = 0.
In what follows Makila considers the open loop unstable case, that is when
|a| > 1. Surprisingly, the stabilizing feedback gain value, defined by the condition
(kb− a) = 0, does not apply here. In fact, Makila proves that the necessary and
sufficient condition for the existence and uniqueness of a solution of the closed
loop system is

lim
t→−∞ a−t(−kd(t) + v(t)) = 0
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Hence, for |a| > 1, there are square summable signals d and v such that the
closed loop equation has no solutions. Where is the error? Makila’s conclusion
is that ”We can’t invert (1 + kG(z)) so that 1/(1 + kG(z)) would make (3) well
defined for arbitrary square summable v and d[...]”. The inconsistency, typified
by the above discussion, is not the only one encountered in feedback systems.
Others are discussed in, for example in [2], [3], [6], [7]. Inconsistencies arises also
when stochastic processes are considered, see [8].

3 Fundamental Requirements

Any theoretical and systematical analysis must provide a consistent and coher-
ent description of the system to be examined.
The fundamental requirements for a consistent time-domain and frequency-
domain description of linear time-invariant systems are:

1) the class of signals must constitute a linear space;

2) the class of systems must constitute an algebra of linear operators mapping
the class of signals into themselves;

{class of linear operators}
{linear space} −→ {linear space}

3) the inverses of the return difference operators must exist and themselves be-
long to the chosen class of systems.

The class of signals and the class of systems then constitute a suitable context
for the consideration of linear time-invariant systems incorporating cascade, par-
allel path, feedback configurations and double sided signals.

Consider the simple feedback diagram

x T
y

-



276 Emanuele Ragnoli and William Leithead

where the linear space of inputs and outputs is Z, the integers, and the linear
operator T is I, the identity operator. The linear operator describing the closed
loop system would appear to be

1
2
I

Hence, the output is related to the input by

output =
input

2

It is obvious that the output might not belong to Z. The problem is the following.
The feedback configuration is equivalent to the operator relationship

(I + T )y = x

and, furthermore, for the feedback to be well defined, there must exist a solution,
a y in the linear space, for all x belonging to the linear space, that is, the inverse
operator for (I + T ) must exist. This does not happen for the above situation.
A natural solution to the problem is easily found, it consists in enlarging the
linear space of inputs and outputs, in this case choose the linear space to be Q.

4 Possible Solutions

In both Section 2 and 3 serious difficulties are encountered due to the lack of
invertibility of the return difference operator. The solution in Section 3 is to
enlarge the class of signals from Z to Q. The solution of Makila’s paradox might
be sought in two different ways:

a) only consider stable systems;

b) only consider single sided signals;

(a) is clearly absurd, it would mean dropping most of the problems addressed
by control theory. (b) is rather poor, not just from the sake of mathematical
completeness in general system theory, but also because the concept of trans-
fer function involves double sided signals. In fact, for any discrete-time linear
invariant system with time interval T , when the response exists, x[n] → y[n]
where

x[n] = MeσnT cos(ωnT + δ)

and
y[n] = AMeσnT cos(ωnT + δ + φ)

∀n ∈ Z. With z = ej(σ+jω)T , the transfer function for the system is defined such
that |G(z)| = A and arg{G(z)} = φ for each value of σ and ω.
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5 Solution (c), the Fourier Domain

From the above discussion neither (a) nor (b) are satisfactory solutions. A change
of the analysis domain is the key for a consistent and coherent approach. For
this purpose we must introduce the following notations and conventions:

Mclaurin series and z transform: for x[k] = 0, k < 0

χ(q) =
∞∑

k=0

x[k]qk

for q ∈ C, with χ(q) analytic for |q| ≤ R, provided the summation (the Maclaurin
series for χ(q)) exists for |q| ≤ R. Changing the notation such that

X(z) = Z{x[k]} = χ(q)q=z−1 =
∞∑

k=0

x[k]z−k

for z ≤ R−1 defines the standard (single sided) z transform for the sequence
x[k]. Its inverse is

{x[k]} = Z−1{X(z)} = { 1
2πj

∮
C

χ(q)
qk+1

dq} = { 1
2πj

∮
C

X(q−1)
qk+1

dq}

where C is the contour in the complex plane defined by the circle, centered on
the origin with radius R, traversed in the anti-clockwise direction.

Laurent series and Fourier series: for the sequence {x[k]}

χ(q) =
∞∑

k=−∞
x[k]qk

for q ∈ C, with χ(q) analytic for R1 ≤ |q| ≤ R2, provided the summation (the
Laurent series for X(q)) exists for R1 ≤ |q| ≤ R2. Changing the notation such
that

X(ω) = P{x[k]} = χ(q)q=e−jωT =
∞∑

k=−∞
x[k]e−jωT

with χ(ω) a periodic function of period 2π/T . Its inverse is

{x[k]} = P−1{X(w)} = { 1
2πj

∮
C

χ(q)
qk+1

dq} = { T

2π

∫ π
T

− π
T

X(ω)ejkωT dω}

where C is the contour in the complex plane defined by the circle, centered on
the origin with radius R, traversed in the anti-clockwise direction.

In Makila [3], paradox (1) is analyzed in the z-domain using the relationship

Y (z) = G(z)X(z)
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where G(z) is the discrete transfer function for the system and X(z) and Y (z)
are the z-transforms of the input, x[k], and of the output, y[k], (to simplify
the expression we omit the disturbance terms v and d). We notice the discrep-
ancy between the z-transform defined above (single sided) and the z-transform
that the author uses to study (1). The latter is double sided, allowing Makila
to deal with double sided signals, but introducing some annoying inconsistencies.

An alternative way of analysis of discrete linear time-invariant systems is pro-
posed by Leithead et al. [5], that is to study them in the periodic frequency
domain by the relationship

Y (ω) = K(ω)X(ω)

where K(ω), the discrete frequency response function for the system is periodic
and X(ω) and Y (ω) are periodic functions with Fourier coefficients x[k] and y[k].
The new analysis is constructed by analytic extension of the discrete transfer
function, and is equivalent to the z-domain analysis for the cases where the
signals considered are single sided and causal. However, considering that the
Fourier series is double sided, it is natural that signals can now be double sided
and, furthermore, the analysis gains the advantage of the full power of Fourier
analysis.

6 Causality and Stability

The change of domain suggested and proposed in Leithead et al [5] implies
automatically not only a change of mathematical tools, but also a redefinition
of goals and context.
We study a discrete linear time invariant system modelled by the linear constant
coefficient finite order difference equation

y[k] + a1y[k − 1] + ...an−1y[k − (n − 1)] + any[k − n]
= b0x[k] + b1x[k − 1] + ... + bm−1x[k − (m − 1)] + bmx[k − m]

The corresponding discrete transfer function is

G(z) =
b0 + b1z

−1 + ... + bm−1z
−(m−1) + bmz−m

1 + a1z−1 + ...an−1z−(n−1) + anz−n

and the corresponding discrete frequency response function is

K(ω) =
b0 + b1e

−jωT + ... + bm−1e
−j(m−1)ωT + bme−jmωT

1 + a1e−jωT + ...an−1e−j(n−1)ωT + ane−jnωT

where T is the sampling interval. Formally the discrete frequency response func-
tion and the discrete transfer function corresponding to a difference equation are
related by

K(ω) = G(z)z=ejωT
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In what follows we consider a particular example and we compare the z-domain
analysis with the frequency domain analysis. Let the system be defined by

y[k] − ay[k − 1] = bx[k]

with a > 1 and the input be

x[k] =
{

0 k < 0
e−ckT c > 0, k ≥ 0

In the z-domain the discrete transfer function is

G(z) =
b

1 − az−1

and the z-transforms of input and output

X(z) =
1

1 − e−cT z−1

Y (z) =
1

(1 − az−1)(1 − e−cT z−1)

Hence, the response of the system is

yz[k] =
{

0 k < 0
b

(a−e−cT ) (a
k+1 − e−(k+1)cT ) k ≥ 0

In the frequency domain the discrete frequency response function

K(ω) =
b

1 − ae−jωT

and the Fourier series of input and output

X(ω) =
1

1 − e−cT e−jωT

Y (ω) =
b

(1 − ae−jωT )(1 − e−cT e−jωT )

and the response of the system

yP [k] =

{
− b

(a−e−cT )a
(k+1) k < 0

− b
(a−e−cT )e

−(k+1)cT k ≥ 0

A comparison of the two system responses shows clearly that {yP [k]} �= {yz[k]}.
The reason is that a linear constant coefficient finite order difference equation
does not define a discrete time linear time-invariant system. Initial conditions
must be added. Consequently, the discrete transfer function corresponds to the
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difference equation with one choice of initial conditions, while the discrete fre-
quency response function corresponds to the difference equation with another
choice of initial conditions. Hence, the discrete frequency response function for a
particular linear time invariant system is not necessarily obtained from the dis-
crete transfer function of the system by substitution z = ejωT . In our example
the two inverse transfer functions

φz [k] =
{

0 k < 0
bak k ≥ 0

φP [k] =
{−bak k < 0

0 k ≥ 0

are different.
Now consider the general case again. Other than a polynomial in z−1, the discrete
transfer function corresponding to the difference equation can be expanded by
partial fractions as a sum of terms of the form b/(z−1 + rejθ) (the presence of
repeated fractions, which are ignored here, does not invalidate what follows).
The inverse z-transform of the term is

Z−1(
b

(z−1 + rejθ)
) = {φz[k]}

where

φz [k] =
{

0 k < 0
−b(−r)−(k+1)(cos(k + 1)θ − jsin(k + 1)θ) k ≥ 0

It follows that, for the system corresponding to the discrete transfer function,
φz [k] is zero for k < 0. It means that the system is causal but not necessarily
stable as r may not be strictly greater than one.

The discrete frequency response function corresponding to the difference equa-
tion can be expanded by partial fractions as a sum of terms Ψr(ω) where

Ψr(ω) =
b

e−jωT+rejθ

The inverse Fourier series

P−1{Ψr(ω)} = {φr[k]}
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where

φr [k]r<1 =
{

b(−r)−(k+1)(cos(k + 1)θ − jsin(k + 1)θ) k < 0
0 k ≥ 0

φr[k]r=1 =
{

1
2b(−r)−(k+1)(cos(k + 1)θ − jsin(k + 1)θ) k < 0
− 1

2b(−r)−(k+1)(cos(k + 1)θ − jsin(k + 1)θ) k ≥ 0

φr[k]r>1 =
{

0 k < 0
−b(−r)−(k+1)(cos(k + 1)θ − jsin(k + 1)θ) k ≥ 0

It follows that, for the system corresponding to the discrete frequency re-
sponse function, |φp[k]| is bounded by (c1 + c2 |k|N ) for some N ≥ 0, c1 and c2;
that means, φP [k] is weakly stable, in the sense that

e−γ|k|φP [k]

tends to zero as k tends to ±∞ for all γ > 0, but not necessarily causal as φP [k]
may not be zero for k < 0. When r �= 1 for all terms in the expansion, φp[k] is
stable and tends to zero exponentially as k tends to±∞.
It should be noted that

Z−1(b/(z−1 + rejθ)) = (P )−1{Ψr(ω)}

only when r > 1, that means when the inverse transform is stable and causal.
Hence

φP [k] = φz [k]

if and only if the system is stable and causal.

The change of analysis domain leads us to change the control task, we don’t in-
vestigate anymore the stability property of G(z), we now investigate the causality
property of K(ω).

7 Reformulation in U
Changing the domain of the analysis we managed to slightly increase (now dou-
ble sided signals can be treated) the class of signals. But still signals like steps,
ramps, unbounded signals and others are excluded. As in Section 3 we proceed
by enlarging the linear spaces of inputs and outputs.
A convenient and practical framework is formulated using ultradistributions and
periodic ultradistributions.To do that, first we need to introduce the concept of
distributions, some related linear spaces relate and of Fourier transform.

Distributions: the value assigned to each φ(t) ∈ D, the class of good func-
tions of finite support, by the functional x ∈ D, the class of distributions, is
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denoted by x[φ(t)]. The symbol for, respectively a regular functional in D and
the ordinary function by which it is defined, e.g. x and x(t), are distinguished
by the explicit presence in the latter of the variable.

The following subclasses of D are required:

DT = {x ∈ D : x =
∞∑

k=−∞
akδkT } T > 0

DT
E = {x ∈ DT : with ak

(1+|k|T )N square summable for some N ≥ 0} T > 0

DT
EN = {x ∈ DT : with ak

(1+|k|T )N square summable} N ≥ 0 T > 0

DT
B = {x ∈ DT : with |ak| ≤ (1 + |k|T )N for some c > 0 and N ≥ 0} T > 0

DT
BN = {x ∈ DT : with |ak| (1 + |k|T )N for some c < 0} N ≥ 0 T > 0

where the functional δτ in D is defined by

δτ [φ(t)] = φ(τ)

for all φ(t) ∈ D. In general, a shifted functional is indicated as a subscript; that
is, xτ is defined such that

xτ [φ(t)] = x[φ(t + τ)]

for all φ(t) ∈ D. When x is a regular functional defined by the function x(t), xτ

is the regular functional defined by the function x(t− τ). The definitions of DT ,
DT

E , DT
EN , DT

B and DT
BN are specific to some value of the parameter, T , and DT

E ,
DT

EN , DT
B and DT

BN are subclasses of DS , the class of tempered distributions.
Clearly DT

E = DT
B .

Fourier transform: for x(t) ∈ S, the class of good functions,

X(ω) = F{x(t)}(ω) =
∫ ∞

−∞
x(t)e−jωtdt

with X(ω) a good function. The inverse is

x(t) = F−1{X(ω}(t) =
1
2π

∫ ∞

−∞
X(ω)ejωT dω

Ultradistributions: ultradistributions are an extension of the definition of
Fourier transform. Each functional x ∈ D is related by a linear bijection to
a functional X ∈ U such that

x[φ∗(t)] = 2πX [Φ∗(ω)]

for all φ(t) ∈ D with
Φ(ω) = F [φ(t)](ω)
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The functional x and X constitute a Fourier transform pair with

X = F{x} and x = F−1{X}
UT , the class of periodic ultradistributions, is the subclass of U consisting of all
periodic functionals in U of period 2π/T .
Similar to the Fourier transform, the most general extension to the definition
of the Fourier series is provided by UT . For any sequence {x[k]}, the functional
x ∈ DT with ak = x[k] is related by Fourier transform to the periodic functional
X ∈ UT such that

X = F{x}

x = F−1{X} =
∞∑

k=−∞
x[k]δkT

There thus exists a linear bijection between the class of all sequences and UT .
Furthermore,

F{
∞∑
−∞

x[k]δkT } =
∞∑
−∞

x[k]ekT

where ekT is the regular functional defined by the function e−jkωT (the functional
e0T is just the identity functional). The functional

∑∞
k=−∞ x[k]δkT is the Fourier

series and the sequence {x[k]} the Fourier coefficients for X with

x[k] =
T

2π
X [ejkωT h(ω)]

where h(ω) is any unitary function, with parameter 2π
T , which is the Fourier

transform of some function in D.
The subclasses UT

E , UT
EN , UT

B , UT
BN of U are defined as those for which the mem-

bers are the Fourier transforms of the members of the corresponding subclass
of D. US , the Fourier transform of DS is itself DS and the subclasses UT

E , UT
EN ,

UT
B , UT

BN are subclasses of US . Being subclasses of the class of tempered distri-
butions, DT

E , DT
EN , DT

B, DT
BN are also subclasses of US .

For a consistent and coherent analysis it is required:

a)the Fourier transform of discrete signals are represented by a class of func-
tionals in U ;

b)the discrete frequency response functions are represented by linear operators
mapping he linear space of signals into itself.

We notice that U is a linear space and that the signals themselves are repre-
sented by the corresponding class of functionals in D.
A natural choice of representation of the discrete frequency response functions
for a discrete system, with sampling time T , would be the class of periodic mul-
tipliers on US with period 2π/T . Since the multipliers define linear operators,



284 Emanuele Ragnoli and William Leithead

the requirements (a) and (b) are met. But we still need to establish that the dis-
crete frequency response functions considered before are represented by periodic
multipliers on US .
The discrete frequency response functions, when non singular, is clearly rep-
resented in US by their regular functionals. However, a regular functional in
US is not defined by a term ψr(ω), r = 1, in the expansion of the discrete
frequency response function corresponding to a constant coefficient finite order
difference equation system (the presence of repeated fractions continues to be
ignored here). Instead, the functional in US corresponding to the function ψr(ω),
r = 1, is defined by the limit in US as ε tends to zero of the regular functional

ψ(1+ε) + ψ(1−ε)

2

Any term of the form ψr(ω),r = 1, in the expansion of the discrete frequency re-
sponse function corresponding to a constant coefficient difference equation should
thus be replaced by a term (ψ(1+ε) + ψ(1−ε))/2 with ε arbitrary small. With the
above modification when singular, any discrete frequency response function con-
sidered before is represented in US by the regular functional defined by the func-
tion K(ω) = G(z)z=ejωT . The following theorem establishes that the functional
so defined are multipliers on US .

Theorem 1. With the above modification when singular, let K(ω) = G(z)z=ejωT

for a constant coefficient finite order difference equation system with sampling
time T then

(i) K(ω) is periodic, with period 2π/T , and infinitely differentiable and K(ω)
and all its derivative are bounded;

(ii)K(ω), the regular functional defined by the function K(ω), is a periodic mul-
tiplier on US.

Proof. (i) follows immediately from the definition, modified to be non singular
when required, of K(ω) such that K(ω) = G(z)z=ejωT .

(ii) follows immediately from part (i) and the properties of the multipliers on
US (a multiplier on US is a regular functional defined by an infinite differen-
tiable function such that the magnitude of the function and all its derivative are
bounded by polynomials).

8 Two Definitions of Stability, a Comparison

With the new analysis we study two different ways of approaching the notion of
stability. First, we proceed in a natural manner with stability related to square
summable signals, second we make the same study when stability is related to
bounded signals.
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8.1 Reformulation in UT
E

According to the previous discussion a system corresponding to a discrete fre-
quency response function is required to be stable in some sense such as mapping
square summable signals onto square summable signals; that is, they map DT

E0

into itself or more generally DT
EN into itself for all N ≥ 0. Hence, an appropriate

reformulation is provided by the following definition:

Definition 1. The Fourier series of signals are represented by the functionals
in UT

E and the discrete frequency response functions are the functionals in MT ,
the class of periodic multipliers on UT

E mapping UT
EN into itself for all N ≥ 0.

The inverse Fourier transforms of the discrete frequency response function are
convolutes on the class DT

E , the inverse Fourier transforms of the Fourier series.
Like Theorem 1 in the reformulation in U it only remains to show that the
discrete frequency response functions considered before are represented in MT .

Lemma 1. Let M be a regular functional defined by the infinitely differentiable
function M(ω) and M r, the regular functional defined by M r(ω), be its rth

derivative. Then M is a periodic multiplier on UT
E mapping UT

EN into itself for
all N ≥ 0 provided M is periodic with period 2π/T ;

The proof is a consequence of theorem 15.24 of [9].

Theorem 2. (i) Let M be a periodic multiplier on US, with period 2π/T , then
M is a member of MT .

(ii) With the usual modification when singular, let K(ω) = G(z)z=ejωT for a
constant coefficient finite order difference equation then K, the regular func-
tional defined by the function K(ω), is a member of MT .

Proof. (i) follows immediately from Lemma 1. (ii) follows immediately from part
(i).

It is well known that addition and multiplication are well-defined for multipliers
when considered as linear operators. Then, for M1 and M2 it is required that the
operator (M1 + M2) and (M1M2), defined by the addition and multiplication
of operators, themselves correspond to multipliers on UT

E . Similarly, a feedback
configuration is well defined for a multiplier, M ∈ MT , when considered as a
linear operator, provided the input domain is restricted to the range of (I +M);
that is, the input X ∈ UT

M where

UT
M = {Y : Y = (I + M)X for some N ≥ 0 and X ∈ UT

EN}

When X �= 0 implies MX �= −X for all x ∈ UT
E , the inverse operator

(I + M)−1 : UT
M → UT

E
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for the operator (I + M) : UT
E → UT

M , corresponding to the multiplier (I + M),
exists. It is required that the operator (I+M)−1 itself corresponds to a multiplier
on UT

M . When such a multiplier exists, it is a left inverse, denoted by (I +M)−1,
of the multiplier (I +M) on UT

E . The input domain should be unrestricted, that
is UT

M = UT
E , when (I + M)−1 is a multiplier in MT and an inverse of the

multiplier (I +M) on UT
E . These issues are addresses by the following theorem.

Theorem 3. (i) MT constitutes an algebra;

(ii) let M be a multiplier on US defined by the function M(ω) such that (I +M)
has no finite zero; then the functional (I + M)−1 exists and is a multiplier and
inverse on US.

Proof. (i) As periodic linear operators, the multiplier define an algebra of pe-
riodic operators on UT

E mapping UT
EN into itself for all N ≥ 0. However, the

sum and product of two periodic multipliers are themselves periodic multipliers
defined simply by the sum and product, respectively, of the functions defining the
original multipliers. Hence, MT defines an algebra.

(ii) Since M(ω) is periodic and everywhere infinitely differentiable and (I +
M(ω)) has no finite zeros, (I + M(ω))−1 is periodic and everywhere infinitely
differentiable. It follows immediately, by theorem 16.22 of [9] and Theorem 2 part
(i), that (I + M(ω))=1 defines a periodic multiplier in MT . Furthermore, since
(I + M(ω))−1(I + M(ω)) = I, the multiplier is an inverse on US as required.

An implication of Theorem 3 is that compound systems constructed by combin-
ing, through cascade, parallel path and feedback configuration, constant coeffi-
cient finite order difference equation systems are represented by the systems of
Definition 1.

The reformulation of the analysis of discrete time linear invariant systems ac-
cording to Definition 1 and Section 6 is distinguished from the usual frequency
domain analysis for three main reasons:

a) the definition of signals and systems is in terms of functionals;

b) the analysis of systems is centered on causality rather then stability;

c) the periodic frequency response function would usually be expected to corre-
spond to the actual system such that K(ω) = F{φz}(ω), which is not necessarily
the case here.

8.2 Reformulation in UB

An alternative definition of stable discrete frequency response functions is to
require them to map bounded signals onto bounded signals; it means, they map
DT

B0 into itself or more generally DT
B into itself for all N ≥ 0. Hence, an alter-

native to Definition 1 is provided by the following definition.
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Definition 2. The Fourier series of signals are represented by functionals in
UT

B and the discrete frequency response functions are the functionals in MT∗ ,
the class of periodic multipliers on UT

B mapping UT
BN into itself for all N ≥ 0.

The inverse Fourier transforms of the discrete frequency response functions are
convolutes on the class DT

B, the inverse Fourier transforms of Fourier series.
The development is similar to that of the previous section, with Theorems 2 and
3 replaced by Theorems 4 and 5 below.

Lemma 2. Let M be a regular functional defined by the infinitely differentiable
function M(ω) and M r, the regular functional defined by M r(ω), be its rth

derivative. Then M is a periodic multiplier on UT
B mapping UT

BN into itself for
all N ≥ 0 provided M is periodic with period 2π/T ;

The proof is a consequence of theorem 15.24 of [9].

Theorem 4. (i) Let M be a periodic multiplier on US, with period 2π/T , then
M is a member of MT∗.

(ii) With the usual modification when singular, let K(ω) = G(z)z=ejωT for a
constant coefficient finite order difference equation then K, the regular func-
tional defined by the function K(ω), is a member of MT∗.

Proof. (i) follows immediately from Lemma 2. (ii) follows immediately from part
(i).

Theorem 5. (i) MT∗ constitutes an algebra

(ii) Let M ∈ MT∗ be a multiplier on US defined by the function M(ω) such
that (I + M(ω)) has no finite zeros then the functional (I + M)−1 exists and is
a multiplier and inverse on US.

Proof. The proof is similar to the one of theorem 3.

The reformulations of Definition 1 and 2 are closely related. Following Theorem
2(i) and 4(i), UT

E = UT
B and MT = MT∗. In other words, the class of systems,

stable in the sense of mapping UT
E0 into itself, and the class of systems, stable in

the sense of mapping UT
B0 into itself, are identical and have the same domain.

9 Resolution of Makila Paradox

Returning to Makila’s paradox we analyze it using a frequency domain analysis
according to Definition 1 and 2.
Consider an unstable plant defined by the discrete transfer function

G(z) =
bz−1

1 − az−1
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for a > 1. By analytic extension the discrete frequency response function is

K(ω) = G(z)z=ejωT =
be−jωT

1 − ae−jωT

When (a − kb) �= 1, the inverse of [1 + kK] exists and is the multiplier in MT

defined by the function [1+kK(ω)]−1. When (a−kb) = 1 the inverse of [1+kK]
exists as functional in UT but not as a multiplier in MT , thereby, restricting its
domain to some subclass of UT

E . In this case, the inverse of [1 + kK] is defined
by

1
2

lim
ε→0

{[1 + (1 + ε)kK)]−1 + [1 + (1 + ε)kK]−1}
that is, the limit of the regular functional defined by the function

1
2

lim
ε→0

{[1 + (1 + ε)kK(ω))]−1 + [1 + (1 + ε)kK(ω)]−1}

Clearly the inverse of [1 + kK] is causal if and only if (a − kb) < 1. Hence,
enclosing the plant in a feedback loop with gain k, the closed loop system is
stable, in the sense of Definition 1 and 2, if and only if (a − kb) < 1.
With (a − kb) < 1, choose the time domain input to be

x[n] =
{−1 n < 0

1 n ≥ 0

that is, in the periodic frequency domain,

X = lim
ε→0

{X1+ε + X1−ε}

where X1±ε are the regular functionals defined by the function

1
(1 − 1

1±ε )e
−jωT

For any sequence, {Fn}, of functionals in D such that limn→∞ Fn = F ∈ D
and any multiplier, M , MF = M limn→∞ Fn = limn→∞ MFn. Hence the corre-
sponding closed loop system output in the periodic frequency domain response
is

Y = KCX = KC lim
ε→0

{X1+ε + X1−ε} = lim
ε→0

{KC(X1+ε + X1−ε)}

KC = [1 + kK]−1kK

Since, KC is causal and stable and the time series corresponding to P−1{X1±ε}
are square summable, the time domain signal equivalent to KC(X1+ε + X1−ε)
can be determine in the usual manner, specifically

yε[n] =

⎧⎪⎨⎪⎩
− kb

1−(1−ε)(a−kb) (
1

1−ε )
n−1 n < 1

kb[ 1
1−(1+ε)(a−kb) (

1
1+ε )

n−1

−( 1+ε
1−(1+ε)(a−kb) + 1−ε

1−(1−ε)(a−kb) )(a − kb)n] n ≥ 1
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where

Yε(ω) =
kbe−jωT

1 + (kb − a)e−jωT
(

1
1 − 1

1+εe
−jωT

+
1

1 − 1
1+εe

−jωT
)

Hence the closed loop system output in the time domain is

y[n] = lim
ε→0

{− kb
1+kb−a n < 1
kb

1+kb−a − 2 kb
1+kb−a (a − kb)n n ≥ 1

10 Conclusion

The consistency of time domain and frequency domain description of discrete-
time linear time invariant systems is established. The class of signals is enlarged
to include double sided signals, random signals, steps, ramps and other un-
bounded signals of interest in system theory. In addition, the consistency holds
when the systems are open loop unstable. A similar framework for continuous
time linear time-invariant systems is under development.
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Abstract. In this chapter, we address the situation where agents need
to learn from one another by exchanging learned knowledge. We employ
hierarchical Bayesian modelling, which provides a powerful and princi-
pled solution. We point out some shortcomings of parametric hierarchi-
cal Bayesian modelling and thus focus on a nonparametric approach.
Nonparametric hierarchical Bayesian modelling has its roots in Bayesian
statistics and, in the form of Dirichlet process mixture modelling, was re-
cently introduced into the machine learning community. In this chapter,
we hope to provide an accessible introduction to this particular branch of
statistics. We present the standard sampling-based learning algorithms
and introduce a particular EM learning approach that leads to efficient
and plausible solutions. We illustrate the effectiveness of our approach
in context of a recommendation engine where our approach allows the
principled combination of content-based and collaborative filtering.

1 Introduction

There are many occasions where agents should “learn” from one another. As an
example, the effectiveness of a treatment for a cardiac disease is a function of
the severity of the disease and patient characteristics but might also vary from
hospital to hospital (due to hidden factors such as varying patient population,
staff training, local expertise, . . . ). Thus models that predict the outcomes for
different hospitals should be quite similar but will also be different to some de-
gree. Despite the differences in the models it would be advantageous if various
models could benefit from each other’s learned knowledge, in particular in the
case that there is only a small data set available for each hospital. A similar
situation arises in the design of recommendation engines that predict the in-
terests of users in various items. Essentially each user is an individual and one
should learn a personal model for each user. On the other hand if few training
data points for the active user are available one would like to benefit from the
recommendations of like-minded users, as in collaborative filtering. In machine
learning, the scenarios described are known as transfer learning or meta learning.

R. Murray-Smith, R. Shorten (Eds.): Switching and Learning, LNCS 3355, pp. 290–312, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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In the Bayesian literature this framework falls into hierarchical Bayesian (HB)
modelling. The basic idea in HB modelling is that information between differ-
ent models can be exchanged via common hyperparameters. In this chapter, we
provide an introduction to HB modelling. We emphasize that, in our view, HB
by itself is useful but also severely limited since it is inflexible in the representa-
tion of the “learned prior”. Additional flexibility is obtained by a process called
Dirichlet enhancement in which the prior distribution is specified in terms of a
highly flexible multinomial distribution with a Dirichlet prior. Of particular in-
terest is the limit that the number of states in the multinomial becomes infinite
in which case we obtain a Dirichlet process and our hierarchical model becomes
a Dirichlet process mixture model.3 Dirichlet process mixture models originated
in Bayesian statistics [11] [1] and recently found growing interest in the machine
learning community, in particular in the context of infinite mixture models. A
particular advantage of Dirichlet process mixture models is that the number of
components required for achieving a good overall model is automatically deter-
mined by the algorithm. In the problem setting described in this chapter this
feature is of minor interest in comparison to the benefits achieved by the trans-
fer of learned knowledge via HB modelling. We describe the standard sampling
approach for inference in Dirichlet process mixture models and also introduce a
particular expectation maximization (EM) solution that is powerful and efficient
in the frameworks addressed in this chapter.

The chapter is organized as follows. In the following section we provide an
intuitive motivation for nonparametric HB modelling and present the first al-
gorithmic solution to the problem. In Section 3 we introduce HB modelling
more systematically and discuss some of its shortcomings. In Section 4 we in-
troduce the process of a Dirichlet enhancement, which is a first step towards
nonparametric HB modelling. The finite-dimensional approach presented in Sec-
tion 4 is not of great practical interest by itself but provides the basis for the
infinite-dimensional nonparametric HB models described in Section 5. We dis-
cuss stochastic sampling and EM as approaches towards parameter inference. In
Section 6 we illustrate the effectiveness of our approach using the example of a
recommendation engine where our approach allows the principled combination
of content-based filtering and collaborative filtering. In Section 7 we discuss re-
lated work, in particular recent work on infinite models. In Section 8 we provide
conclusions.

2 Intuitive Introduction

2.1 Bayesian Modelling

We will develop the ideas based on two-class classification although the same
concepts are valid for general probabilistic models, e.g., for regression and den-
sity estimation. Readers who want to fresh up on Bayesian statistics may consult
3 Dirichlet process mixture models are also known as mixtures of Dirichlet processes

(MDPs).
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the excellent tutorial [15]. Let P (Y = y|x, θ) denote the probability that Y as-
sumes the state y ∈ {0, 1} given features x and given a parameter set θ = {θj}j .
In a Bayesian setting one defines an a priori distribution P (θ|hprior) with hy-
perparameters h = hprior. Both prior distribution and hyperparameters specify
one’s prior belief. The prior belief is typically rather unspecific or non-informative
and thus the prior distribution should place nonzero probability on all reasonable
model parameters.

As example, in Figure 1A the prior distribution might be specified as a Gaus-
sian distribution with

P (θ|hprior) = N (θ|μprior , Σprior)

with hprior = {μprior, Σprior}.
Bayesian learning means updating the parameter distribution based on avail-

able training data. Given a data set with ND data points D = {(xn, yn)}ND
n=1

one can calculate the posterior parameter density using Bayes formula as

P (θ|D, hprior) =
1

P (D)
P (D|θ)P (θ|hprior)

where, in our classification example, assuming exchangeability,

P (D|θ) =
ND∏
n=1

P (yn|xn, θ).

Note that in this chapter we do not treat the inputs x probabilistically and focus
on the modelling of the condition probability distribution y|x.

For classifying a new pattern we obtain the predictive distribution

P (Y = y|x, D, hprior) =
∫

P (Y = y|x, θ)P (θ|D, hprior)dθ.

If additional data points become available, the posterior parameter distribution
P (θ|D, hprior) now assumes the role of the new “learned prior” , i.e., the available
knowledge prior to the arrival of the additional data. In the case that the prior
distribution is conjugate to the likelihood function, we obtain

P (θ|D, hprior) = P (θ|hpost),

i.e., the posterior parameter distribution has the functional form of the prior
distribution but with new hyperparameters hpost. Returning to our example, we
would expect that

P (θ|hpost) = N (θ|μpost, Σpost)

with hpost = {μpost, Σpost} and where limND→∞ detΣpost = 0, i.e., the posterior
distribution become increasingly concentrated (Figure 1B) with an increasing
number of data points and asymptotically is locally peaked at the maximum
likelihood solution

θML := argmax
θ

P (D|θ).
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2.2 Hierarchical Bayesian Modelling

Now assume, that we have obtained M data sets {Dj}M
j=1 for related but not

identical settings and we have trained M different models with parameters
{θj}M

j=1 on those data sets. For the sake of argument let’s assume that each
data set is sufficiently large such that P (θj |Dj , hprior) is sharply peaked at the
maximum likelihood (ML) estimate θML

j . Let {θML
k }M

k=1 denote the maximum
likelihood estimates for the M models. Recall that since the models were trained
on different data sets generated from different settings, the maximum likelihood
parameter values are not identical. Figure 1C illustrates the set of maximum
likelihood parameter estimates. Now, if a new model concerns a related prob-
lem, then it makes sense to select new hyperparameters hhb such that P (θ|hhb)
approximates the empirical distribution given by the maximum likelihood pa-
rameter estimates instead of using the original uninformed prior P (θ|hprior). In
this way the new model can inherit knowledge acquired not only from its own
data set but also from the other models.

Returning to our example, we would expect that for a new setting with a
new model with parameters θM+1

P (θM+1|{Dj}M
j=1) ≈ P (θM+1|hhb) (1)

where, in the example, P (θM+1|hhb) = N (θM+1|μhb, Σhb), with hhb = {μhb, Σhb}
and where now in the non-degenerate case

lim
M→∞

detΣhb > 0

and the entries of Σhb converge to fixed typically nonzero values (Figure 1C).
What we have just described is the basis for hierarchical Bayesian modelling
that we will introduce more formally in Section 3.

2.3 Nonparametric Hierarchical Bayesian Modelling

In more cases than not, the empirical distribution of the maximum likelihood
parameters {θML

k }M
k=1 will not fall into the class of distributions that can be

described by P (θ|h) for any h. If the assumed noninformative prior is too in-
flexible to truthfully model the learned prior, then this is a severe limitation
of the classical HB approach. See for example Figure 1D. Thus we might pre-
fer a nonparametric approximation in the form of the empirical nonparametric
distribution of the maximum likelihood parameters

P (θM+1|{Dj}M
j=1) ≈

1
M

M∑
k=1

δθML
k

,

where δθML
k

is a distribution concentrated at a single point θML
k .
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Fig. 1. A: The circle indicates the standard deviation of the prior Gaussian
distribution with mean zero representing P (θ|hprior) = N (θ|μprior , Σprior). B:
The posterior parameter distribution P (θ|hpost) = N (θ|μpost, Σpost) with lets
say ND = 100 data points; shape and location of the Gaussian have changed.
With ND → ∞, P (θ|hpost) is concentrated at the maximum likelihood estimate
θML. C: Set of maximum likelihood estimates {θML

j }M
j=1 and approximation

P (θM+1|{Dj}M
j=1) ≈ N (θ|μhb, Σhb) . The implicit assumption in HB modelling is

that this distribution can be approximated by a member of the family of distribu-
tions assumed for the prior, i.e., in this example a Gaussian distribution. D: Here
is an example where this distribution cannot be approximated by a Gaussian dis-
tribution. Thus, nonparametric HB with P (θM+1|{Dj}M

j=1) ≈ 1
M

∑M
k=1 δθML

k
is

more appropriate.

Now if we receive the data set DM+1 for the new setting, we predict

P (YM+1 = y|x, DM+1) ≈ 1
C

∫
P (YM+1 = y|x, θ)P (DM+1|θ)

M∑
j=1

δθML
j

dθ

=
1
C

M∑
j=1

P (DM+1|θML
j )P (Y = y|x, θML

j ) (2)
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where C =
∑M

j=1 P (DM+1|θML
j ) normalizes the distribution. Here and in the

following, capital C stands for an appropriate normalization constant. Note that
the result (Equation 2) is very intuitive. To make a prediction for setting M+1 for
input x, each model 1, . . . , M makes a prediction using its maximum likelihood
parameter estimate and this prediction is then weighted with the probability
that this model explains the data points DM+1 of the setting of interest. This
means that initially, with only few data points available for setting M + 1, the
predictions of all previous models are essentially averaged. With more data points
available for setting M + 1, models that agree well with the data DM+1 obtain
a higher weight.

3 Hierarchical Bayesian Modelling

In this and the following sections we will introduce HB modelling and non-
parametric Bayesian modelling more formally. We start with HB. Recall that
in Section 2.2 we essentially learned new hyperparameters hhb to communicate
learned knowledge. This is exactly the basis for the knowledge transfer via com-
mon hyperparameters in the framework of HB modelling. The joint probabilistic
HB model is written as (Figure 2A)

P (h)
M∏

j=1

P (Dj |θj)P (θj |h). (3)

The hyperparameters h —now considered to be random variables with prior
distribution P (h)— are common to all models whereas each model has its own
parameters {θj}M

j=1. Given the hyperparameters, the models are exchangeable,
which means that the probabilistic model is invariant to a permutation (re-
indexing) of the models.4

Now, for a model M + 1 that did not yet receive any data points, we obtain
as a full Bayesian version of Equation 1

P (θM+1|{Dj}M
j=1) ∝

∫ ⎡⎣P (θM+1|h)P (h)
M∏

j=1

∫
P (θj |h)P (Dj |θj) dθj

⎤⎦ dh. (4)

In all but the simplest cases, the inference based on the HB model in Equation 4
does not lead to closed-form solutions and one typically relies on Markov Chain
Monte Carlo (MCMC) approximations. We do not want to get deeper into the
issues of learning parametric HB models since we already concluded that the
conventional HB approach is too limited for many applications. Readers more
interested in the basics of HB modelling may consult [12].
4 In contrast to the HB modelling assumption if we would assume that the models

are all identical, then all data points are exchangeable and the probabilistic model is
P (h)P (θ|h)

∏M

j=1
P (Dj |θ), which would lead to one global model. The other extreme

is that all models are independent
∏M

j=1
P (hj)P (Dj |θ)P (θj |hj), which would result

in M independent models.



296 Volker Tresp and Kai Yu

Fig. 2. A: A HB model. B: A Dirichlet enhancement HB model. C: A plate model
for HB. The large plate indicates that M samples from P (θ|h) are generated; the
smaller plate indicates that, repeatedly, data points are generated for each θ. D:
A plate model for the Dirichlet enhanced HB. In B and D the finite dimensional
hyperparameters h are replaced by the distribution g. In the finite-dimensional
case, g is finite-dimensional and is generated from a Dirichlet distribution. In
the infinite-dimensional case, g is infinite-dimensional and is generated from a
Dirichlet process. We also indicate that, in the latter case, the prior distribution
for g is defined using a base distribution G0 with density g0 and concentration
parameter τ (see Section 5)

.

4 Dirichlet Enhanced Hierarchical Bayesian Modelling

4.1 The Basic Idea

To alleviate the problem of HB we have to specify a parameterization of the
prior parameter distribution that on the one hand can represent the assumed
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noninformative prior knowledge but also is flexible enough to be able to ap-
propriately represent the “learned” prior to be communicated to a new model.
The concept we are applying here is sometimes referred to as Dirichlet enhance-
ment [10] and the basic idea is to replace the parametric prior distribution by
a finite or infinite multinomial distribution with a Dirichlet prior. The essential
features are that, first, the multinomial distribution by itself poses no constraint
on the distributions that can be represented and that, second, the noninforma-
tive prior knowledge can be encoded in the form of the base distribution of the
Dirichlet (which we will introduce further down). In this section we will consider
the case that the model parameters can only assume values out of a given finite
set of size K. The finite case is mathematically considerably easier and already
introduces the main features of Dirichlet enhanced HB modelling. From an ap-
plication point of view the case that K → ∞ is of greater importance and will
be discussed on the the following section.

To represent the model parameters we introduce a random variable Θj for
each model j that can be in states θ1, . . . , θK . We further assume that a particular
state is chosen by a multinomial distribution such that, for all j, P (Θj = θk|g) =
gk with gk > 0 and

∑K
k=1 gk = 1 such that the probabilities gk, k = 1, . . . , K

play the role of the hyperparameters (previously the h)(Figure 2B). We specify
our prior belief in terms of the conjugate prior that in this case is a Dirichlet
distribution, i.e.,

P (g) = Dir(g|τα1, . . . , ταK) =
1
C

K∏
k=1

gταk−1
k

where g = {gi}K
i=1, α = {αi}K

i=1, αk ≥ 0,
∑K

k=1 αk = 1 and with precision param-
eter τ > 0. A description of the properties of a multinomial model with a Dirich-
let prior including most equations used in this section can be found in the already
mentioned tutorial [15]. A sample of a Dirichlet distribution is a probability dis-
tribution and the precision parameter τ corresponds to an equivalent sample size
or weight. We can integrate out g and have P (Θj = θj) = αj , j = 1, . . . , K.5 Thus
we can specify our non-informative prior belief by defining the αj , j = 1, . . . , K
and the θj , j = 1, . . . , K appropriately. The solution used in the following is to
randomly select θj from P (Θj) and set αj = 1/K, j = 1, . . . , K (Figure 3 (top)).
This is quite similar to the implementation of the non-informative prior belief
in the infinite model of Section 5 where K → ∞.

The joint distribution of the Dirichlet enhanced model is now (compare Equa-
tion 3 and Figure 2)

P (g)
M∏

j=1

P (Dj |Θj = θj)P (Θj = θj |g). (5)

5 Incidentally, the most likely configuration is also g = α.
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4.2 Sampling from a Dirichlet Model

First, we consider the simpler model P (g)P (Θ|g) consisting of a Dirichlet prior
for g and a multinomial likelihood. We assume that for a fixed (but potentially
unknown) g, N repeated samples of Θ are drawn. These samples form the set
Dθ. Let’s assume that in Dθ we have Nk instances of θk with N =

∑K
k=1 Nk.

Since the Dirichlet distribution is conjugate to the multinomial distribution,
we obtain for the posterior distributions for g also a Dirichlet distribution with

P (g|Dθ) = Dir(g|τα1 + N1, . . . , ταK + NK).

A nice property is that one can integrate out g to obtain the posterior predictive
density [15]

P (Θ = θk|Dθ) =
ταk + Nk

τ + N
. (6)

Equations 6 says that we can conveniently calculate the predictive distribution
without the need for the explicit estimation of g. This is of great importance in
the next section in the context of Dirichlet processes where g is infinite dimen-
sional and could not explicitly be represented. According to Equation 6, a state
becomes more likely if it has previously been observed with high frequency.

Note that Equation 6 also specifies how a new sample can be generated
given previously generated samples Dθ. This sampling procedure generates data
points from a fixed (but potentially unknown) g generated by the Dirichlet
prior. Asymptotically, g can be inferred from the samples by noting that gk =
limN→∞ Nk/N.

The generation of samples according to Equation 6 is called a Pólya urn sam-
pling process or a Chinese restaurant sampling process (for a recent discussion,
see [27]). The essential feature is that if a state is sampled in the past, the prob-
ability that the same state is selected in the future is increased. This might be
compared to a “Chinese restaurant” where customers select with higher proba-
bility a table that is already occupied by customers, or the Pólya urn where, if
one draws a ball with a certain color, more than one ball with the same color
is replaced and thus the probability of picking the same color in the future is
increased.

From Equation 6 it is clear that if the precision parameter τ is large, many
samples are generated independently from the base distribution α but if τ is
small, the first few samples quickly dominate the sampling procedure and the
subsequently generated samples are quite clustered (see Figure 3).

4.3 Gibbs Sampling for Dirichlet Enhanced HB

We now return to the Dirichlet enhanced HB model from Equation 5 where
for each setting j we have access to the data sets Dj with likelihood functions
P (Dj |Θj = θk). We will discuss two approaches for parameter inference in the
HB setting. In this subsection we introduce Gibbs sampling, which is particu-
larly attractive if K is large. Readers, not familiar with Gibbs sampling should
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Fig. 3. Top: Subjective non-informative prior (Gaussian) and samples generated
from this prior. These samples can be used for Dirichlet enhancement. Center:
Samples from a distribution that was generated by a Dirichlet distribution with
a Gaussian base distribution with precision τ = 10. Clustering is quite appar-
ent. Although the positions of the samples represent the base distribution, the
counts are neither uniform nor follow the base distribution. Counts reflect the
Pólya urn process (Section 4.2) or, equivalently, the stick breaking process (Sec-
tion 5.1). Thus, that the ragged structure is not a result of a finite sample size
—100000 samples were drawn— but is an inherent property of a distribution
generated by a Dirichlet distribution, resp. Dirichlet process. Bottom: Same,
but with τ = 10000. With a large precision parameter, samples are drawn pre-
dominantly independently from the base distribution. Again, 100000 samples
were drawn.

consult [13]. The second approach is an EM solution, which is quite effective for
smaller K and will be discussed in the next subsection.

Based on Equation 5 we can derive the conditional distribution of a variable
of interest, say Θj , given samples from the remaining variables and given the
data sets as
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P (Θj = θk|{Θl}l 
=j , {Dl}M
l=1) =

1
C

P (Dj |Θj = θk) P (Θj = θk|{Θl}l 
=j)

=
1
C

(ταk + Nk)P (Dj |Θj = θk) (7)

where we have Nk assignments of Θl = θk in the remaining variables with l �= j
and

∑
k Nk = M − 1. Note that we have integrated out g as in Subsection 4.2.

Thus a sample θk for setting j becomes more likely, if θk explains the Dj-th
data set well and if either it is favored by the prior distribution (large αk) or if θk

is a sample already selected by the other models (large Nk). This latter property,
that samples for different models influence each other, results in a sharing of
information between the different models, as intended in HB modelling.

Note that the representation is upper limited by min(M, K), thus Gibbs
sampling is particularly interesting for large K, i.e., if K >> M .

4.4 EM for Dirichlet Enhanced HB

We now discuss the EM solution to learning in Dirichlet enhanced HB. Here, we
treat {Θj}M

j=1 as unknown variables, that we integrate out, and the goal is to
find the MAP estimate of g that is defined as

g(MAP ) := argmax
g

P (g)
M∏

j=1

K∑
k=1

P (Θj = θk|g)P (Dj |Θj = θk).

The EM algorithm iterates for t = 0, 1, 2, . . . the E-step and the M-step. At
iteration t, the E-step estimates [15], for k = 1, . . . , M, m = 1, . . . , K

P̂ (t)(Θk = θm|Dk) =
P̂ (t)(Dk|Θk = θm)P̂ (t)(Θk = θm)∑K
l=1 P̂ (t)(Dk|Θk = θl)P̂ (t)(Θk = θl)

(8)

The M-step updates for k = 1, . . . , M, m = 1, . . . , K

P̂ (t+1)(Θk = θm) = ĝt+1
m

with

ĝt+1
m =

1
τ + M

(
ταm +

M∑
j=1

P̂ (t)(Θj = θm|Dj)
)

.

After convergence, the prediction of an active model a ∈ 1, . . . , M becomes

P (Ya = y|x, {Dj}M
j=1) ≈∑K

k=1 P̂ (Θa = θk)P (Da|Θa = θk)P (Ya = y|x, Θa = θk)∑K
k=1 P̂ (Θa = θk)P (Da|Θa = θk)

. (9)

Note that this solution is similar to the heuristically motivated solution of
Equation 2 in the sense that predictions of the models are weighted by the prob-
ability with which those models explain the data set of the active model. The
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differences are that first, we have an additional weighting constant P̂ (Θa = θk)
that evaluates the overall relevance of a model and second, we assumed here
that the parameters were generated rather unspecifically from the base distri-
bution whereas in the heuristic solution they correspond to maximum likelihood
estimates.

5 Hierarchical Bayesian Modelling with Infinite Models

Dirichlet enhancement is of particular importance if we let K → ∞, which is
the case we consider in this section.

The transition K → ∞ leads us to nonparametric HB, where, as in the
finite-dimensional case, the θk, k = 1, . . ., are sampled randomly from the base
distribution. In this context we need to first introduce some properties of the
Dirichlet process, which is a generalization of the Dirichlet distribution to infinite
dimensions.

5.1 Dirichlet Process

The Dirichlet process (DP) is of central importance in nonparametric Bayesian
modelling. A formal definition can be found in the appendix. A DP is written
as DP(G0, τ) where G0 is the base distribution with probability density g0 that
corresponds to the αj in the finite-dimensional case; τ ≥ 0 is the concentration
parameter. Please, compare this definition to the definition of a Dirichlet dis-
tribution in Section 4.1. 6 As in the case of the Dirichlet distribution we can
use the Pólya urn representation to sample from a distribution generated by a
Dirichlet process. Given previous samples {θl}j−1

l=1 generated from a distribution
generated from a DP with base distribution g0 and precision τ , the j− th sample
is generated from the probability density

P (θj |{θl}j−1
l=1 ) =

τg0(θj) +
∑j−1

k=1 δθk

τ + j − 1
. (10)

Note that this formula is a direct generalization of the finite-dimensional case,
Equation 6. Samples are generated with probability proportional to τ from the
base distribution and with increasing probability proportional to j − 1 from
an already existing sample. Thus, for small τ we observe the same clustering
effect as in the finite dimensional case (Figure 3). A mathematical treatment
of nonparametric Bayesian modelling and the Dirichlet processes can be found
in [14].

Equation 10 specifies how samples are generated from a distribution that
is a sample from a DP. It is also possible to generate directly a sample from
such a distribution by using the so-called stick breaking process (for a definition
consult [26] or [27]) according to which this distribution can be written as an

6 In the literature one often finds the notation α0 for the concentration parameter.
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infinite sum of weighted delta functions placed at samples randomly selected
from the base distribution,

g =
∞∑

k=1

βkδθk
. (11)

The βk ≥ 0 and with
∑

k βk = 1 only depend on τ and are generated by
the stick breaking process, which is based on a sequence of independent beta
random variables. Note that even if the base distribution G0 is smooth, a sample
distribution is discrete in nature.

5.2 Nonparametric Bayesian Modelling for Dirichlet Enhanced HB

In the context of an infinite model, i.e. a DP, the HB model of Equation 5 is
called a Dirichlet process mixture model. The conditional probability distribu-
tion required for Gibbs sampling becomes [10] [32]

P (θj |{θl}l 
=j , Dj) =
1
C

⎛⎝τg0(θj) +
∑
l:l 
=j

δθl

⎞⎠P (Dj |θj)

=
1
C

⎛⎝τP̃ (Dj)P̃ (θj |Dj) +
∑
l:l 
=j

δθl
P (Dj |θl)

⎞⎠
where

P̃ (Dj) :=
∫

P (Dj |θ)g0(θ)dθ, P̃ (θj |Dj) := P (Dj|θj)g0(θj)/P̃ (Dj),

and where {θl}l 
=j are the values of the remaining models. Note that this is a
direct generalization of Equations 7. With probability proportional to τP̃ (Dj) a
sample is generated from P̃ (θj |Dj) and with probability proportional to P (Dj |θl)
we take an existing sample θl. Note that our notation hides the fact that several
θl might be identical, increasing the selection probability accordingly. This pa-
rameter clustering is particularly strong if τ is small in which case the number
of distinct parameters is typically much smaller than M . Note also that, despite
the fact that we are considering infinite models, computational load per round
and memory requirements only grow proportional to M . This semi-automated
determination of the number of distinct models is an important feature and was
the focus of some recent work (see Section 7) but is not of central interest in the
HB framework presented here.

The presented Gibbs sampling approach was introduced by Escobar [9]. Since
in Gibbs sampling only one parameter is re-sampled at a time, the clustering of
the parameters makes it difficult for the sampling procedure to modify parame-
ter values. In the appendix we describe a mixture of models approach introduces
by MacEachern [19] that turns out to be equivalent to the presented model.
Gibbs sampling based on that model exhibits much better mixing properties.
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The blocked Gibbs sampler that is based on a finite stick-breaking prior pro-
vides another computational attractive sampling procedure [18]. A comprehen-
sive overview of sampling techniques for Dirichlet process mixture models can
be found in [21].

5.3 Variational EM

In a nonparametric setting our EM equations from Subsection 4.4 cannot di-
rectly be applied since a distribution generated by a Dirichlet process is infinite-
dimensional. In [29] the authors discuss a one-step EM solution. Here, we dis-
cuss an EM solution that can be derived from a variational approximation that
approximates probability densities of the E-step in Equation 8 by a simpler ap-
proximating density [30]. We propose a sum of weighted delta functions defined
at the maximum likelihood estimates of the models, i.e.,

P̂ (θj |Dj) ≈ qj(θj) =
M∑

k=1

ξj,kδθML
k

j = 1, . . . , M (12)

where ξj,k are the variational parameters with ξj,k ≥ 0 and
∑M

k=1 ξj,k = 1. In
each variational E-step, the variational parameters are adapted such that KL-
divergence between the variational approximation and P̂ (t)(θj |Dj) is minimized.

As a generalization to the finite-dimensional case we propose as update equa-
tions for t = 1, 2, . . .:

ξt
j,k =

P (Dj|θML
k )P̂ (t)(θML

k )∑M
k=1 P (Dj |θML

k )P̂ (t)(θML
k )

j = 1, . . . , M k = 1, . . . , M. (13)

The M-step updates

P̂ (t+1)(θML
k ) =

1
τ + M

(
τg0(θML

k ) +
M∑
l=1

ξlδθML
l

)
k = 1, . . . , M

with ξl =
∑M

j=1 ξj,l .
Note that the EM iterations are quite simple since many terms, such as

P (Dj |θML
k ), don’t change in the iterations. Also note the similarity to the finite-

dimensional case in Section 4.4.
Now, the prediction of an active model a ∈ 1, . . . , M becomes

P (Ya = y|x, {Dj}M
j=1) ≈

τP̃ (Da)P̃ (Ya = y|x, Da) +
∑M

k=1 ξkP (Da|θML
k )P (Ya = y|x, θML

k )

τP̃ (Da) +
∑M

k=1 ξkP (Da|θML
k )

(14)
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where we use

P̃ (Da) :=
∫

g0(θ)P (Da|θ) dθ

P̃ (Ya = y|x, Da) :=
1

P̃ (Da)

∫
g0(θ)P (Da|θ)P (Ya = y|x, θ) dθ.

Note the great similarity of this prediction equation to the prediction equa-
tion for the finite dimensional case (Equation 9) and the heuristically defined
solution of Equation 2: the second term in the numerator in Equation 14 contains
the model predictions using maximum likelihood parameter estimates, weighted
by the probability that models agrees with the data set of the active model
P (Da|θML

k ). Here, additional relevance weights ξk are included, which represent
the overall relevance of the models. If we look at Equation 13, it becomes clear
that the contribution of the j-th setting to the relevance weight ξk is essentially
determined by the term P (Dj |θML

k ) which means that a setting j which has
received a small number of data points contributes to all ξk, whereas a setting
j which receives a large number of data points will mostly contribute to ξj . In
our experiments we found that the weight of a model prediction in Equation 14
is mostly determined by the term P (Da|θML

k ) and that the ξk are more or less
of the same magnitude and thus have only a minor influence. Thus in many
applications one might refrain from the fitting of the variational parameters ξj,k

and use Equation 14 with ξk = 1, k = 1, . . . , M .
The first term in the numerator of Equation 14 puts additional weight on the

prediction of the active model. In particular, it consists of the Bayesian prediction
of the active model a based on its own data P̃ (Ya = y|x, Da) weighted by τ and
the evidence of the data of the active model P̃ (Da). The latter term evaluates
the correctness of the prior modelling assumption.

Equation 14 is equivalent to the Bayesian prediction of the active model if
we use a prior proportional to

τg0(θ) +
M∑

k=1

ξkδθML
k

which illustrates the similarity of this solution to the heuristically defined solu-
tion of of Equation 2, in particular with τ → 0. With τ → ∞ the prediction of
the active model is simply the prediction of the active model trained on its own
data, i.e., all models are independent and only rely on their own data. With a
finite τ we obtain the HB solution.

If compared to the Gibbs sampling approach, the variational EM solution has
several important advantages. Each model can be trained independently from
the other models just based on its own data set. Thus the solution is easy to
train, modular, and efficient and an additional model can easily be incorporated.
From a theoretical perspective, Gibbs sampling might be more appealing but one
should note its typically slow convergence and the slow mixing of the sampling
process in practice.
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An advantage of the sampling approach is that it leads to an automated
clustering of the models, a feature that is not achieved in the variational EM
solution. On the other hand, if such a model clustering is of prime importance,
one can achieve it, for example, by a corresponding postprocessing step.

The variational approximation of Equation 12 uses maximum likelihood pa-
rameter estimates. This has the advantage that asymptotically, with an increas-
ingly large number of data points for the active model, the overall prediction con-
verges to the prediction of the active model. The same feature can be achieved
if the variational approximation is based on the maximum a posteriori (MAP)
parameter estimates of the models. The MAP estimate is more appropriate if
only few training data points are available. Alternatively, one could select for the
variational approximation sets of samples obtained from the posterior parameter
distributions for each model.

6 A Recommendation Engine

In this section we provide a summary of the application of nonparametric hier-
archical Bayesian modelling to information filtering. A more detailed description
can be found in [30].

Information filtering denotes a family of techniques that try to understand
people’s information needs, and then help them find the right information items
while filtering out undesired ones. In a very wide range of applications, such
as spam email filtering, news filtering, recommender systems for products (e.g.,
books, movies, CDs), and web navigation, information filtering is playing an
increasingly important role. Content-based filtering (CBF) and collaborative fil-
tering (CF) represent the two major information filtering technologies.

CBF has its root in the concept of relevance feedback in the information
retrieval literature (e.g., Rocchio’s algorithm [25]). It explores the similarity of
contents between information items (e.g., articles, paintings, music), to infer
which of the yet unseen items might be of interest for the active user, based on
some annotated examples previously given by the user. In contrast, collaborative
filtering methods typically accumulate a database of item ratings—explicitly
or implicitly—cast by a large set of users. The prediction of ratings for the
active user is solely based on the ratings provided by all other users, under the
assumption that like-minded users share similar information needs. The method
does not rely on a description of the item’s content.

It is often difficult in CBF systems to define content features that are suffi-
ciently indicative. There is often a large gap between low-level content features
(visual, auditory, or others) and high-level user interests (like or dislike a paint-
ing or a CD). In some other circumstances, the features are not available at
all.

On the other hand, pure CF only relies on user preferences, without incorpo-
rating the actual content of items. CF often suffers from the extreme sparsity of
the available data set, in the sense that users typically rate only very few items,
thus making it difficult to compare the interests of two users. Furthermore, pure
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CF can not handle items for which no user has previously given a rating. Such
cases are easily handled in CBF systems, which can make predictions based on
the content of the new item.

We combine CF and CBF under the framework of nonparametric hierarchical
Bayesian modelling which leads to a model that combines the advantages of both
approaches. Essentially a CBF model is formed for every user and the predictions
are combined using the nonparametric HB approach using variational EM as
described in Section 5.3.

In our application, we focus on a survey of 642 paintings of 30 artists. A
web-based online survey is built to gather user ratings. In the survey, each user
gave ratings, i.e., “like”, “dislike”, or “not sure”, to a randomly selected set of
paintings. Finally we got a total of N = 190 users’ ratings. On average, each of
them had rated 89 paintings.

For each painting, we calculate the color histogram (216-dim.), the correla-
gram (256-dim.), the first and second color moments (9-dim.) and the pyramid
wavelet texture (10-dim.) to form a 491-dimensional feature vector.

We will examine the performance of various algorithms in terms of their
accuracy in predicting users’ interests in paintings. We used as our base user
models a probabilistic version of the support vector machine (SVM) [22] with
Gaussian kernels. Hybrid filtering 1 implements the nonparametric HB approach
using variational EM as described in Section 5.3; Hybrid filtering 2 is identical,
except that we set τ = 0; for SVM Content-Based filtering (CBF) we use τ → ∞
and obtain independent user models; Collaborative filtering (CF) combines a
society of advisory users’ preferences to predict an active user’s preferences. The
combination is weighted by the Pearson correlation between the active user and
the other advisory users’ preferences. The algorithm applied here is described
in [7].

These algorithms are evaluated using two metrics. One is Top-L accuracy,
i.e., the proportion of truly liked paintings among L top ranked paintings. Since
normal users only care about the quality of the first set of returned items, this
quantity reflects the subjective quality of an information filter system. Secondly,
we evaluated the ROC (receiver operating characteristics) curve, which plots
sensitivity versus 1-specificity. Sensitivity is defined as the probability that a
good painting is recommended by the system; and specificity is the probability
that a disliked painting is rejected by the system. By changing the cut point
(e.g., return top 10 or 20 paintings), a curve can be plotted. ROC curve is
insensitive to the prior distribution of liked (or disliked) paintings. The area
under the curve, called ROC sensitivity, measures the objective quality of the
ranking. A higher ROC sensitivity indicates a better ranking.

In the application it was not required that a user rates all of the 642 paintings
in the survey; thus for each user we only partially know the “ground truth”
of preferences. As a result, the true top-L accuracy cannot be computed. We
thus adopt as accuracy measure the fraction of known liked paintings in the top
ranked L paintings. The quantity is smaller than true accuracy because unknown
liked paintings are missing in the measurement. However, in our survey, the
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Fig. 4. Left: Top-L accuracy. Right: ROC curves. From [30].

presentation of paintings to users is completely random, thus the distributions
of rated/unrated paintings in both unranked and ranked lists are also random.
This randomness dose not change the relative values of the compared methods.
Thus in the evaluation of the experiment it still makes sense to use the adopted
accuracy measurement to compare the three retrieval methods. The ROC curves
are insensitive to this problem.

In our experiments, we used a 10-fold cross validation scheme, in which we
pick up each fold as a set of active users and treat the rest as users in the data
base. We fix the number of given examples for each active user to be 20 (10 posi-
tive and 10 negative), and predict the user’s interests in the remaining paintings.
For each active user, recommendations for 10 different paintings are calculated.
Finally, the overall average performances and error bars are computed. 4 shows
the results. Both Top-L accuracy and ROC curve clearly indicate that the two
hybrid algorithms outperform CF and CBF. We found that the extracted paint-
ing features are poor indicators of human interests, which is the reason for the
bad performance of CBF. The ROC curves of the two hybrid filtering algorithms
are essentially overlapping. However, Top-L accuracy suggests that hybrid filter-
ing 1 is slightly better.

7 Related Work in Machine Learning

Dirichlet process mixture models were introduced into machine learning by
Neal [20] [21] who used them to realize infinite mixture models. Dirichlet pro-
cesses were applied to realize infinite mixtures of Gaussians [23], infinite mix-
tures of Gaussian experts [24] and infinite hidden Markov models [3]. These
models are also based on nonparametric HB modelling but the application focus
is different: In these papers, there are no repeated measurements for a given
model ( i.e., in the plate model of Figure 2D, N = 1) and the focus is on model-
based soft clustering using an infinite mixture approach and on the realization
of an infinite mixture of experts solution. An inherent advantage of Dirichlet
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process mixture modelling is that the number of clusters does not need to be
specified in advance but is automatically determined via the sampling process.
A small precision parameter τ leads to few clusters whereas a large precision pa-
rameter leads to many clusters. Thus in those applications a sensible tuning —or
learning— of τ is required. In those papers the sampling procedure described
in the appendix is used. A hierarchical Dirichlet process model was recently
introduced to model hierarchical unsupervised structures [27]. Mathematically
demanding variational mean-field approximations were applied to Dirichlet pro-
cesses in [6] and [31]. Some of the work on the development of self-organizing
maps for the clustering of probabilistic models can also be related to nonpara-
metric HB modelling [17].

Examples of the application of HB to machine learning are probabilistic
clustering [8], the finite-dimensional HB approach by [4] [5] who used HB in the
context of a model for latent semantic analysis and information retrieval and the
application of neural networks models to HB [16] [2].

8 Conclusions

Nonparametric hierarchical Bayesian modelling is a powerful and flexible ap-
proach for multi-agent learning if agents need to share learned knowledge. We
introduced the basic background and the common inference approach via Gibbs
sampling. We described a variational EM solution that leads to excellent results
in a multi-agent learning framework. The main advantages of the EM solution
are its modularity, low computational complexity, intuitive plausibility and good
performance. Many variants of nonparametric hierarchical Bayesian modelling
have been used in the literature with various combinations of model specific
parameters, shared parameters and Dirichlet enhanced distributions and with
varying levels of hierarchies (see, for example, [28] and [27] ). Thus nonparamet-
ric hierarchical Bayesian modelling is quite flexible and might find an increasing
number of applications in multi-agent learning.

9 Appendix

9.1 Definition of a Dirichlet Process

The theorem asserts the existence of a Dirichlet process and also serves as a
definition [14]. Let (IR,B) be the real line with the Borel σ-algebra B and let
M(IR) bet the set of probability measures on IR, equipped with the σ-algebra
BM .

Theorem 1 Let α be a finite measure on (IR,B). Then there exists a unique
probability measure Dα on M(IR) called the Dirichlet process with parameters α
satisfying:

For every partition B1, B2, ...., Bk of IR by Borel sets
(P (B1), P (B2), . . . , P (Bk)) is Dir(α(B1), α((B2), . . . , α((Bk))
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Fig. 5. Left: The mixture model. Right: The plate model. Note that in contrast
to the HB model, all parameters are global parameters.

9.2 Equivalence of Dirichlet Enhanced HB to Mixture Models

Finite Mixture Models: In Section 4 we had concluded that the prior distri-
bution in HB must be made flexible and we introduced the process of Dirichlet
enhancement. Thus we obtained a highly flexible prior distribution that permit-
ted the sharing of knowledge between models. An alternative formulation is the
mixture of models approach presented here (see Figure 5).

The predictive model of the mixture model is

P (Y = y|x) =
K∑

k=1

P (Z = k)P (Y = y|x, k)

where Z is a latent variable with states 1, . . . , K. It is now uncertain which model
generated the data for the active setting such that

P (Da, Ya = y|x) =
K∑

k=1

P (Z = k)P (Da|k)P (Ya = y|x, k).

To classify a new pattern, we thus obtain

P (Ya = y|x, Da) =
∑K

k=1 P (Z = k)P (Da|k)P (Ya = y|x, k)∑K
k=1 P (Z = k)P (Da|k)

.

Please, note the similarity of this equation to Equation 9 that deals with the
finite-dimensional Dirichlet enhanced case.

It now turns out that there is an exact equivalence with the finite-dimensional
Dirichlet enhanced model in Section 4 if:

– the likelihood models for HB and the mixture approach are identical

P (Ya = y|x, k) = P (Ya = y|x, θk),
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– the same parameter vectors {θk}K
k=1 are selected,

– the prior for Z is a multinomial,

P (Z = k) = pk

– which is generated from a Dirichlet distribution with

p1, . . . , pK ∼ Dir(τα1, . . . , ταK).

Details can be found in [21] and the graphical model and plate model are
shown in Figure 5.

Infinite Mixture Models: It turns out that the equivalence also holds if we let
K → ∞ in which case we obtain an infinite mixture model, which is equivalent
to a Dirichlet process mixture model (Section 5), if we chose a prior parameter
distribution as the base distribution

P (θk) = g0(θk) ∀k,

and with
p1, . . . , pK ∼ Dir(τ/K, . . . , τ/K).

Stochastic sampling based on this model can be implemented as follows [21]:
One first updates the latent variables {Zj}M

j=1. Let consider the update of Zj ,
which denotes the latent variable which is associated with the j-th model (Fig-
ure 5). As in nonparametric HB, a new sample depends on the states of the
latent variables of the remaining variables which might also be clustered. Let
Nk be the number of variables in the set {Zl}M

l=1, which are in state k, without
counting the state of Zj , i.e.,

∑
k Nk = M − 1.

Then for all states with Nk > 0

P (Zj = k|{Zl}l 
=j , Dj , θ) ∝ NkP (Dj|θk).

A new state is generated with probability

P (Zj �= k for all k �= j|{Zl}l 
=j, Di, θ) ∝ 1
C

τP̃ (Dj)

with P̃ (Dj) :=
∫

g0(θ)P (Dj |θ) dθ. In the first case, the j-th model inherits the
parameters of the models assigned to state k and in the latter case, a new θ is
drawn from P (θ|Dj).

Typically after one update of all latent variables, the model parameters are
all updated. E.g., for all models in state k, a new θk is drawn from

1
C

g0(θk)
∏

{j:Zj=k}
P (Dj |θk).

The advantage of this sampling scheme is that at each round all parameters are
re-sampled and typically assume new values whereas in the sampling schemes de-
scribed in Section 5.2 it is rather unlikely that clustered parameters will assume
new values since only one parameter is re-estimated at a time.

Neal [21] discusses additional advanced sampling techniques.
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Abstract. We apply a constrained Hidden Markov Model architecture
to the problem of simultaneous localization and surveying from sensor
logs of mobile agents navigating in unknown environments. We show the
solution of this problem for the case of one robot and extend our model
to the more interesting case of multiple agents, that interact with each
other through proximity sensors. Since exact learning in this case be-
comes exponentially expensive, we develop an approximate method for
inference using loopy belief propagation and apply it to the localization
and surveying problem with multiple interacting robots. In support of
our analysis, we report experimental results showing that with the same
amount of data, approximate learning with the interaction signals out-
performs exact learning ignoring interactions.

1 Introduction

In the following, we study the problem of analyzing sensor logs created by mobile
agents navigating in unknown environments. We assume that the environment
is static, so that any variation in the sensors is caused by the movement of the
agents in the world. Our goal is to develop algorithms for localization when the
environment is known and also for simultaneous localization and identification
of the environment, which we dub “surveying”. We also consider the situation
of multiple agents that have limited but nontrivial interaction as they explore.
All of these problems can be cast as statistical estimation computations and
approached using techniques of probabilistic inference.

Simultaneous localization and surveying (SLAS) is distinct from the well
known simultaneous localization and mapping (SLAM) problem. In SLAS we
are not trying to learn the occupancy grid of a world, rather we are trying
to learn the values that various sensors (e.g. altitude, temperature, light level,
beacon signals) take on as a function of position in the unknown environment.
Furthermore, we cannot control the movement of the agent, we can only analyze
the sensor logs recorded as it traverses the world. This task is motivated by
agents (for example mobile planetary rovers) which generally operate in open
spaces, collect temporal histories of multiple sensors, and cannot rely on the
odometry of self-locomotion (e.g. because they are navigating extremely rough
terrain or not using conventional wheels).
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Fig. 1. Typical noisy sensor readings seen by a single agent. The first three sensors are
continuous valued sensors; the fourth is a wall-detecting binary sensor. The proximity
sensor indicates whether an agent is in the close proximity with other agents.

Figure 1 shows the typical input to a single agent (robot) in the scenario we
are studying. Each robot moves through the environment under the control of an
external navigation algorithm that we cannot influence. As it proceeds, it logs
readings from multiple noisy sensors, some of which may be smoothly varying
functions of its position in the world and others of which may be intermittent
or discontinuous. No odometry or other information about navigational control
signals (either intended or realized) is available to the agent. When there are
multiple agents navigating the environment at the same time, and they interact
in some way, the problem becomes much more rich. (Without interaction, the
pooled data from all agents is almost identical to one longer data stream from
a single agent.) In the following, we consider a very simple type of interaction:
we assume that agents can detect each other when they are in close proximity.
The most general problem we wish to solve is to simultaneously discover the
trajectories taken by each robot (localization) and to learn the values of each
sensor variable across the environment (surveying).

We approach the localization task as one of state inference in a probabilistic
model and the surveying task as one of unsupervised learning of the model pa-
rameters. In the inference problem, the location of each agent over time is treated
as a hidden variable that is to be inferred, conditioned on the observed sensor
readings (and possibly proximity interactions with other agents). Inference on its
own assumes we are given the model survey parameters, which specify the distri-
butions of sensor values as a function of position across the space. The learning
problem addresses the estimation of these model parameters (sensor map) given
the agent locations over time. The two problems are interconnected, since to
localize, an agent must know the sensor map, but to contribute to the learning
of this map, it must have an estimate of location in the unknown environment.

One very effective way of tackling these problems is to discretize the world
into small spatial cells and to identify each such cell with a discrete state in a
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dynamic Bayesian network such as a Hidden Markov Model (HMM) or a series
of coupled HMMs. When the state is low-dimensional (e.g. containing only a
two dimensional position and no orientation information), this discretization
is expensive but possible. However, in higher dimensions the number of cells
required scales prohibitively. In fact, this discretization is simultaneously the
source of the algorithm’s power and its greatest computational challenge.

Once discretized, we can treat the state as a latent variable and apply stan-
dard statistical learning methods for discrete state models. The key insight is
that by identifying each state in the hidden Markov model with some small
spatial region of the continuous world space, it is possible to naturally define
“neighbouring” states as those which correspond to connected regions in the
underlying space. The transition matrix of the HMM can then be constrained
to allow transitions only between neighbors; this means that all valid state se-
quences correspond to connected paths in the continuous space. The transition
matrix does not need to be explicitly stored or learned, it is merely computed
by a function that respects the state topology; the remaining parameters of the
model scale only linearly with the number of states[12].

For a single agent, or multiple non-interacting agents, the learning and infer-
ence algorithms are identical to those for standard HMMs trained on multiple
observation sequences, except that the transition matrix of the HMM is fixed by
the spatial topology of the problem and is not updated during learning.

Another way to address the problem is to represent the state of each agent
using a distribution over the continuous domain of the random variables. Be-
cause the distribution on these variables can be highly complex and multimodal,
the most natural representation is to store a set of (weighted) samples as an
approximation of the distribution. The greatest advantage of this approach is
that it does not require discretization of the entire state space and thus does not
scale up prohibitively with the number of spatial cells. This general approach
is known as “particle filtering”, and the central technical challenge is how to
update the particles to efficiently represent the state posterior.

In this work, we take the very simple approach of searching only for the
mode of the true posterior, and use a single particle at each time to represent
the state of the agent. Optimizing this set of particles to find the maximum a
posteriori state trajectory is a very difficult search problem. We use the embed-
ded hidden Markov model architecture discussed by [9, 10] as our search engine.
(Although originally it was proposed as a more sophisticated method for draw-
ing samples from the exact posterior.) The search begins by forming a pool of
possible candidate states at each time, candidates, representing the agent’s pos-
sible locations in the unknown environment. Given the pool, we can restrict the
agent’s state to only those values represented by candidates at each time, and
thus define an “embedded HMM”, whose discrete states are the indices within
each pool time. By performing efficient Viterbi-style decoding, we can find the
most probable trajectory of the agent, constrained to pass only through the ex-
isting pool states. If we always include the current best estimate of the state
into the pool of candidates at each time, we are guaranteed to either find a new
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and improved (more probable) state sequence or to retain the same trajectory
we currently have. After the dynamic programming, we create a new pool by
randomly sampling states at each time in the vicinity of the current best state
estimate.

The most difficult and interesting case we explore in this work is that of mul-
tiple agents that navigate through the environment simultaneously and interact
in some way with each other. In this case, exact inference requires estimating
the joint state of all agents, and quickly becomes exponentially expensive be-
cause the effective state space is the product of the state spaces of the individual
robots. For the case of discretized world, we develop an approximate but ef-
ficient and accurate method for solving this multiple-inference problem using
belief propagation (BP). We apply our BP algorithm to the localization and
surveying problem with multiple interacting robots and show that approximate
learning using multiple agents with interaction signals outperforms exact learn-
ing using the same amount of data but ignoring the interaction signals that make
the problem more difficult.

2 Localization with a Single Robot

In this section we develop techniques to solve the localization problem for a
single robot, which navigates in an unknown environment and records some
observations (continuous or binary) from its sensors. We denote the observation
at (discrete) time t from sensor c by yct, the entire vector of sensor readings at
time t by yt, and the unknown state (location) of the robot at time t by st.

The probabilistic graphical model that relates the empirical observation se-
quence Y = {y1, ...,yT } to the hidden state sequence S = {s1, ...sT } is shown
in figure 2. This model specifies a factorization of the joint distribution between
the trajectory and the observation sequence as:

p(Y, S) =
∏

t

p(st|st−1)p(yt|st) (1)

Our goal in localization is to find the optimal trajectory given a sequence of
observations:

arg max
S

log P (S|Y ) = argmax
S

∑
t

[
log P (st|st−1) + log P (yy|st)

]
(2)

1 2 S S3 4

1Y Y2 Y3 Y3

SS

Fig. 2. The graphical model that displays the relationship between the state sequence
s1, ..., s4, and the empirical observation sequence y1, ..., y4. for t = 1, .., 4 time steps
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Later, when we are interested in identifying the parameters (survey maps)
of the unknown world, our goal will be to maximize the likelihood of the obser-
vations given the (survey) parameters, integrating (summing) over all possible
paths the robot could have taken:

max
θ

log P (Y |θ) = log
∑
S

∑
t

[
log P (st|st−1, θ) + log P (yy|st, θ)

]
(3)

As a byproduct of this parameter learning we will end up inferring the
marginal posterior of the robot’s position at each time, thus also performing
a form of average localization. (It is also possible to use our inference about the
single most probable (Viterbi) path of each agent to do a form of MAP learning,
although in the discussion below we focus on maximum likelihood estimation
which sums over all possible paths.)

2.1 Discretizing the World

Our first approach to solving the localization problem is to discretize the world
into small spatial cells. By identifying each state in a hidden Markov model with
some small spatial region of a continuous space, it is possible to naturally de-
fine neighboring states as those which correspond to connected regions in the
underlying space, which leads us to the constrained HMM architecture [12]. The
transition matrix of the HMM is precomputed to allow transitions only between
neighbors; this means that all valid state sequences correspond to connected
paths in the continuous space. The transition matrix does not need to be ex-
plicitly stored or learned, it is merely computed by a function that respects the
state topology; the remaining parameters of the model scale only linearly with
the number of states. Given these constraints, localization reduces to inference
in this sparsely connected HMM, and can be solved using the well known Viterbi
decoder.

To represent the world map of each continuous sensor c, we assume a con-
ditional Gaussian model given the index of the discrete state: P (yct|st = i) =
N (yct; mc

i , σ
c
i ). For binary sensors d we assume a simple Bernoulli model: P (ydt =

1|st = i) = md
i . We assume that the noise in the sensor observations is uncorre-

lated from sensor to sensor and also over time (white).
An example of using this approach for localization (given knowledge of the

sensor maps) is presented in figure 3 (left panel). Note that inference using this
approach will always be only approximate due to the discretization error.

The discretization of the continuous state space can be very expensive and
presents the model’s greatest computational challenge. In higher dimensions or
for very large areas requiring fine spatial resolution to reduce the discretization
error, the number of cells required scales prohibitively. To alleviate this problem,
we can represent the state of the robot using continuous random variables, as
discussed in the following subsection. However, the optimization (search) prob-
lem of finding the best path given a history of sensor readings become extremely
difficult.
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Fig. 3. Display of the discretized approach (left panel) and embedded HMM approach
(right panel) to the robot localization problem, given the true map of sensor readings.
The ”o”s indicate the time slices when the true observation was taken, and ”x”s indicate
the inferred path taken by the robot.

2.2 Continuous Representation

To avoid the exponential cost of discretization as well as the unavoidable estima-
tion error it imposes on localization, we can attempt to represent the trajectories
of each agent using truly continuous random variables. However, two major dif-
ficulties arise when taking this approach: first, how should we represent a joint
distribution over states at all times and second, how should we optimize this
distribution given the sensor readings and the maps? These issues are central to
the study of inference in all nonlinear dynamical systems and various approxi-
mation solutions have been proposed. Here, we follow the common programme
of representing the distribution using sample trajectories, this approach is often
called “particle filtering” or “Monte Carlo filtering”.

We consider the robot’s continuous trajectory to be a sequence of unknown
positions L = {	1, ..., 	T } and our goal is to infer something about L given
the empirical observation sequence Y = {y1, ...,yT } and the known observation
functions p(yc|	) for each sensor. In the most ambitious setting, we could attempt
to infer the full joint posterior over L given Y , but as a first step we consider
only finding the mode of L, i.e. the most likely trajectory given the observations.

For this search, we apply the embedded hidden Markov model[9, 10] as a
simple optimization technique to solve the localization problem without the
need to discretize the world. The optimization starts with some initial guess
L̂ = {	̂1, . . . , 	̂T } of the state trajectory, perhaps from a very coarse discretiza-
tion or other approximation. At each step of the search, we create a pool of can-
didate states at each time. The pool contains K members, representing possible
locations of the agent at each time step t. The candidate states within each pool
are generated according to a proposal distribution Qt(	̂t). In our experiments we
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Fig. 4. Display of one iteration of the embedded HMM optimizer. Left panel shows
part of the robot’s true and currently inferred trajectory, where the ”x”s indicate the
time slices when the true observation was taken, and ”o”s indicate the currently inferred
path taken by the robot. The middle panel displays the candidate states (dots) within
each pool along with the more probable path after performing Viterbi decoding. The
right panel shows the true along with the newly inferred trajectory.

have used simple Gaussian proposals with the mean set to the current guess 	̂t

and a fixed (isotropic) covariance equal at all time steps: Qt = N (	̂t, σI). This
encourages the points placed into the pool to represent plausible alternatives to
the current guess 	̂t about the state at time t. Crucially, we also include the
current guess in the pool.

If we now constrain our search to only consider locations represented by pool
states, the collection of pools across time define an “embedded HMM”, whose
K +1 states are the indices within each pool. By performing Viterbi decoding on
this resulting embedded HMM, we can efficiently search through an exponential
number of trajectories to find the best one. As well, we are guaranteed to always
find a trajectory that increases P (L̂|Y ) or leaves it the same, since the current
guess at each time is always included in the pool. The optimization is repeated
until several steps have passed with no change to our best trajectory estimate.
The complete inference algorithm using embedded HMM is given below:

Localization Algorithm using Embedded HMM:

• Initialize L̂ = {	̂1, ..., 	̂T }
• Repeat until a better trajectory cannot be found:

– Form pools of candidate states for each time step t by:

• Including the current state 	̂t at time t into the pool for time t
• Sampling K other candidate states for each pool from Qt(	̂t)

– Define an embedded HMM, whose K +1 states are the indices within each pool
– Perform Viterbi decoding to select the new trajectory L̂new through the pool

states that increases P (L|Y ) or leaves it the same.
– Set L̂ = L̂new

Of course, the initial trajectory estimate greatly affects the quality of the
final path returned by the search. If we were to randomly initializing the initial
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guess, the algorithm would often get stuck in a poor local optimum. To avoid
this problem, we first subsample time by forming blocks of contiguous sequential
empirical observations (each block containing N observations). The embedded
HMM optimizer is then applied as above, using only one pool per block to find
a coarse estimate of the trajectory, effectively subsampled by a factor of N. This
will help our algorithm to roughly locate the parts of the sensor maps that best
explain each block of empirical observations. Once convergence of the search has
been achieved at the coarse level, the resulting estimate is then used as an initial
trajectory input into a finer level of grouping, and so on until the full resolution
of the problem is reached.

An example of using embedded HMM approach for localization (given the
sensor maps of the world) is presented in figure 3 (right panel). First, the em-
bedded HMM optimizer is applied for the blocks of N=20 sensor observations,
then for blocks of length N=10 (using the final trajectory from N=20 as the
initialization); then N=5 and finally at the full resolution of the problem.

From the results in figure 3, it can be seen that the embedded HMM is capable
of achieving arbitrarily good accuracy in reconstructing the agent trajectories,
while the discrete state constrained HMM approach is ultimately limited by
the discretization error of the grid. However, the discrete state representation
allows us to easily represent and compute a distribution over state trajectories,
for example by computing the marginal uncertainty of state occupations at each
time. Such a distribution will be useful for learning the parameters of an unknown
world, as discussed below.

3 Simultaneous Localization and Surveying

We now turn our attention to the more ambitious problem of analyzing sensor
logs from agents operating in unknown environments. Here, our goal is to simul-
taneously learn (identify) the sensor maps describing the world and localize the
agents by estimating their trajectories. We have dubbed this problem Simulta-
neous Localization and Surveying (SLAS), in contrast to the related problem of
Simultaneous Localization and Mapping (SLAM).

Of course, the SLAS problem is only solvable up to certain identifiability
limitations. The absolute rotation and reflection of the true world map can never
be recovered since rotating or flipping the world and simultaneously rotating and
flipping our trajectory estimates will result in identical likelihood of the observed
sensor logs. Similarly, the scale of the world cannot be recovered unless we have
prior knowledge about the agents velocities. However, up to these degeneracies,
the problem is still worth investigating, as we show below.

3.1 Single Agent

For the case of discretized world, and a single agent, we can use the well known
EM algorithm for learning the parameters of the effective Hidden Markov Model
being used to model the world. In the case of HMMs, the EM algorithm is known
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as Baum-Welch, and the associated equations are very well known. In our case,
the HMM is highly constrained, which makes learning much easier since we do
not need to estimate the state transition matrix. This matrix is fixed by the
spatial topology of states, allowing transitions only between neighbors, and is
not updated during learning. In fact, the sparsity of the spatial topology results
in very efficient inference and learning, since very few entries of the transition
matrix are nonzero and sums need be performed only over these. The learning
equations for the output distributions of each state, which represent the sensor
maps, are the same as for a regular HMM. Inference is performed using the stan-
dard forward-backwards recursions, which are a special case of belief propagation
applied to the graphical model of the HMM.

An example of simultaneously learning the survey parameters and estimating
the agent’s trajectory is shown in the second row of figure 7.

When the sensor maps are known a priori, localization can be performed opti-
mally, and given only a small amount of data it is usually possible to discover the
trajectory of the agent quite accurately. However, when simultaneously learning
the maps and performing localization the problem is much harder. With small
amounts of data (short trajectories), parts of the environment map that have
similar patterns of sensor readings are difficult to distinguish from one another.
Therefore a single robot may have difficulty accurately localizing itself.

The problem can be alleviated by having multiple robots which explore the
environment simultaneously and interact with each other, for example through
proximity sensors. (If the robots were not interacting, the problem would be
exactly equivalent to that of a single robot who explored the environment on
several independent excursions.)

In the interacting agents case, exact learning requires inferring the joint state
of all robots, and quickly becomes exponentially expensive because the effective
state space of the HMM is the product of the state spaces of the individual
robots. In the next section we develop an approximate but efficient method for
inference in this case using belief propagation and apply it to the SLAS problem
with multiple interacting robots.

3.2 Multiple Interacting Agents

Consider a scenario in which multiple robots explore the environment simultane-
ously and interact with each other by communicating signals between them. In
what follows, we only consider a very simple form of interaction: the robots are
equipped with proximity sensors which notify them when they are near another
robot. The proximity signal includes the identity of the other agent encountered,
but not a relative heading.

The new graphical model relating empirical observation sequences, interac-
tion signals, and hidden state sequences is shown in figure 5 for two robots and
four time steps. This model is very similar to the Factorial HMM[4], except that
there are both private outputs from each chain (in our case the sensor readings
of each robot) as well as shared outputs (in this case the interaction signals).
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Fig. 5. The graphical model, that displays the relationship between state chains of
two agents S1 = {s1, ..., s4}, S2 = {s1, ..., s4}, their empirical observations, and the
interaction signals z1, ..., z4 for 4 time steps. The interaction signal zt is shaded if it is
on, which forces the state chains to become coupled.

Note that, even though the state chains are a priori independent, once we
condition on the interaction evidence, the chains become coupled. This makes
inference much more difficult (and similarly learning, which requires inference),
since we can no longer run the simple forward-backward recursions independently
on each robot’s chain. Of course, the factorial representation of the coupled HMM
can always be transformed into a regular HMM, whose effective state space is
the Cartesian product of the state spaces of the individual robots. However,
inference in this “flattened” model requires working in the joint state space of
all robots and quickly becomes exponentially expensive.

Several approaches can be taken to tackle this challenging inference compu-
tation. Stochastic sampling algorithms, usually based on importance sampling
or Markov Chain Monte Carlo[5] can provide randomized (but often unbiased)
estimates of state occupation statistics. One can also employ structured varia-
tional approximations to the posterior over hidden states, similar to the ones
discussed in [4], and proceed to optimize a lower bound on the likelihood.

Another alternative is to apply a class of approximate (i.e. biased) inference
algorithms that are based on belief propagation [11]. Of course, for the uncoupled
HMM, the standard HMM inference algorithms are exactly equivalent to belief
propagation on a particular junction tree constructed from the original graphical
model. For the coupled HMM, we derive below an approximate method for
inference which uses loopy belief propagation (LBP) on the equivalent junction
tree. Loopy BP passes messages exactly as in regular belief propagation, ignoring
the cycles in the graph. The messages are passed according to a predetermined
schedule and beliefs are updated in the standard way. Although approximate,
LBP has proved to be very successful in practice in many other domains[3, 2]

In theory, LBP runs the risk of “overcounting” information, and thus may
not converge or may converge to the wrong answer. However, for our particular
problem we find the algorithm very suitable. Indeed, it has been observed in
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Fig. 6. Factor graph representation of the original Bayes net along with message
propagation.

practice that if the original graph does not contain dense loops, LBP usually
converges and produces very good approximation. In terms of our setup, if the
interaction signals are infrequent (robots do not meet each other very often), then
our graphical model will have exactly this characteristic of large, loosely coupled
cycles; which is well matched to loopy propagation. In the experimental section
we confirm this intuition: loopy BP on our graphs almost always converges to
sensible beliefs; and when it is used as the inference step in learning the resulting
maps accurately survey the true world sensor maps.

4 Localization with Multiple Agents: Loopy Propagation

The multiple agent localization problem focuses on inferring the most probable
trajectories (state sequences) of each agent conditioned on the observed sensor
readings of all agents, and the proximity interactions between agents.

To solve this problem, we first pursue only the mode of the joint distribution
over agent trajectories. That is, we try to find the single set of trajectories (one
for each agent) that simultaneously explain the interaction signals and the sensor
logs of each agent as well as possible.

Our approach is to develop below the variant of LBP known as max-product
loopy belief propagation [13]. This is exactly the equivalent of Viterbi decoding
for coupled HMMs. To derive the necessary equations, we first convert the orig-
inal Bayes net (fig. 5) to its factor graph (fig. 6) representation [7]. The factor
graph contains both variable nodes and factor nodes and is bipartite: edges exist
only between variables and factors. Messages flow only from factor nodes to vari-
ables and back, but never between factors or between variables. Once a variable
node has received messages from all other neighboring factor nodes it takes the
product of these messages and delivers it to the destination factor node. The
message that a factor node f sends to a variable node x is the maximum over
all quantities not present in x of the product of all the incoming messages to f
from other neighboring variable nodes y. The incoming messages to f are also
multiplied by the potential function defined at f before the max is taken:
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μx→f (x) =
∏

h∈neigh(x)\{f}
μh→x(x) (4)

μf→x(x) = max
X\x

f(X)
∏

y∈neigh(f)\x

μy→f (x) (5)

(Note that if we ignore the proximity interactions, the max-product algo-
rithm reduces to performing Viterbi decoding separately on each robot’s state
chain given its sensor observations, i.e. treating it as a regular HMM.) All that
remains is to specify a message passing schedule. In principle, one could apply
any schedule including running the above updates in parallel. We choose a mes-
sage passing schedule in which we cycle through chains, passing messages across
time for one chain, then from that chain to all others (using the proximity poten-
tials), and then across time in the next chain. In effect, we are performing Viterbi
on each chain, taking into account both its observations and the effect of the
messages it receives from other chains (which appear as pseudo-observations).
This schedule is sometimes known as “chainwise Viterbi”.

To formalize the algorithm, we must define the proximity (interaction) po-
tential function fqr(sq, sr) that couples robots r and q. In general, one would like
to account for noisy interaction signals which are functions of the true separation
of the robots. In many applications, the proximity sensors have an extremely low
false positive rate, and a moderately low false negative rate. To make inference
efficient, and keep the loops in our graphical model as large as possible, we ap-
proximate the proximity potential using the assumption that the false positive
rate is zero. Thus, at time slice t if a proximity signal between q and r is detected,
we set

f t
qr(s

q
t , s

r
t ) = N(sq

t , s
r
t )

where N(sq
t , s

r
t ) =

{
1 if sq

t and sr
t are neighbouring states

0 otherwise

Otherwise, if a proximity signal between q and r sensor is not observed (pt
qr =

0), we define fqr(sq, sr) to be a constant.
Note that this definition implies that when a proximity signal is observed,

both robots must be in neighbouring (or identical) states, which according to
our problem corresponds to neighbouring or identical discretized spatial cells.
(Ideally, the definition of the potential function could be more sophisticated,
but this would increase the complexity of inference.) The message at time slice
t that a variable node sq

t node sends to the factor node f t
qr takes the form:

μt
q→fqr

=
∏

h∈neigh(sq
t )\{ft

qr}
μh→sq

t
(6)

Then the message that a factor node f t
qr sends to the variable node sr

t is:

μt
fqr→r = max

sq
t

f t
qr(s

q
t , s

r
t )

∏
y∈neigh(fqr )\sr

t

μt
y→fqr

(7)

Initially, all messages are set to one.
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Max-Product Loopy Belief Propagation executed by each robot r:

• Define: δr
t (i) = maxsr

1 ,...,sr
t−1

p(sr
1, ..., s

r
t = i, yr

1, ..., y
r
t |Θ);

. ψr
t (i) = maxsr

T
,...,sr

t+1
p(sr

T , ..., sr
t = i, yr

t+1, ..., y
r
T |Θ)

– Initialize δr
1(i) = πr

i p(yr
1|sr

1 = i), ψr
T (i) = 1 1 ≤ i ≤ N ,

with N being the number of states.

– Induction for 1 ≤ j ≤ N and 1 ≤ i ≤ N :

δr
t+1(j) =

[
max

i
δr

t (i)Tij

∏
q:proximity

μt
q→r(i)

]
p(yr

t+1|sr
t = j); 1 ≤ t ≤ T − 1

ψr
t (i) = max

j
Tijp(yr

t+1|sr
t = j)ψr

t+1(j)
∏

q:proximity

μt+1
q→r(j) t = T − 1, ..., 1

– Termination: Compute local beliefs and a new set of messages.

γr
t (i) =

δr
t (i)ψr

t (i)
∏

q μt
q→r(i)∑

j δr
t (j)ψr

t (j)
∏

q μt
q→r(j)

For proximity signals, where Z is the normalization constant

μt
r→q(i) =

1

Z
max

sr
t

[
f t

rq(s
r
t , s

q
t = i)δr

t (i)ψr
t (i)

∏
p �=q

μt
p→r(i)

] ∀q

The final max-product algorithm run by each robot is given above. Our mes-
sage passing schedule is quite simple: we iterate through robots r = 1, 2, ..., R
sequentially, running the above max-product algorithm (which includes the ef-
fect of all incoming messages). Afterwords, the algorithm computes local beliefs
γr

t (i) and all outgoing messages μt
r→q are sent to all other agents. We monitor

the convergence of this LBP by the absolute difference between successive local
beliefs and continue passing messages until these stabilize which typically takes
4-5 iterations We have also experimented with running the the above message
updates in parallel, and obtained exactly the same results, although with slightly
slower convergence.

5 Multi-SLAS: Learning with Multiple Agents

The final problem we discuss is the most difficult: simultaneous localization and
surveying using sensor logs from multiple interacting robots. Our approach to
this problem is to employ a loopy belief propagation (LBP) method very similar
to the one from the previous section as the inference engine, and to alternate
between approximate inference using this new version of LBP and parameter
(sensor map) estimation based on the results of this inference.

To develop the new LBP equations, which we will use for learning, we focus
not on the mode of the distribution but on its marginals. In other words, we
use sum-product instead of max-product in an attempt to integrate over all
possible paths that the multiple agents could have taken. This is analogous to
the forward-backward (alpha-beta) procedure for a single HMM but now in the
case of our coupled HMM chains. Once again, we convert the original Bayes net
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to its factor graph representation. As before, once a variable node has received
messages from all other neighboring factor nodes it takes the product of these
messages and delivers it to the destination factor node. However, in contrast to
the max-product algorithm, the message that a factor node sends to a variable
node is the marginalized product of all the incoming messages from its other
neighboring variable nodes, multiplied by its current potential function:

μx→f (x) =
∏

h∈neigh(x)\{f}
μh→x(x) (8)

μf→x(x) =
∑
X\x

f(X)
∏

y∈neigh(f)\x

μy→f (x) (9)

Such algorithms are thus often termed “sum-product” algorithms. We employ
a message passing schedule identical to the one used for max-product loopy
propagation. Using the same potential functions as before,the message at time
slice t that a variable node sq

t node sends to the factor node f t
qr takes the form:

μt
q→fqr

=
∏

h∈neigh(sq
t )\{ft

qr}
μh→sq

t
(10)

Then the message that a factor node f t
qr sends to the variable node sr

t is:

μt
fqr→r =

∑
sq

t

f t
qr(s

q
t , s

r
t )

∏
y∈neigh(fqr )\sr

t

μt
y→fqr

(11)

Sum-Product Loopy Belief Propagation executed by each robot r:

• Define: αr
t (i) = p(yr

1, ..., y
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with N being the number of states.

– Induction for 1 ≤ j ≤ N and 1 ≤ i ≤ N :
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– Termination: Compute marginal beliefs and a new set of messages
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For proximity signals, where Z is the normalization constant

μt
r→q(i) =

1

Z

∑
sr

t

[
f t

rq(s
r
t , s

q
t = i)αr

t (i)β
r
t (i)

∏
p �=q

μt
p→r(i)

] ∀q

Initially, all messages are set to one. Note that in our problem setting, the
messages that are being passed from one robot to another can be interpreted as
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a local marginal belief about the state distribution that different robots have.
LBP essentially tries to insure the consistency of these different local beliefs at
the times when proximity signals are observed.

We iterate through robots r = 1, 2, ..., R sequentially, running the above in-
ference algorithm. When completed, the algorithm has computed γr

t (i) and all
outgoing messages μt

r→q are sent. We monitor the convergence of this LBP by
the absolute difference between successive marginal beliefs and continue passing
messages until these stabilize (which typically takes 15-20 iterations) or until
a maximum number of iterations, which we set to 25, has been reached. After
inference has converged, we perform an M-step to update the model parame-
ters Θ and then repeat the iterative inference procedure before updating the
parameters again.

The final learning and inference algorithm is given below.

Learning Algorithm for Multiple Interacting Robots :

• Repeat until parameters converged or maximum number of learning iterations

– E-step: Perform Inference Step (see above box)

• While inference not yet converged and below maximum inference iterations
∗ Run modified FB recursion for each robot r = 1, ..., R, which

· takes into account the incoming messages from other robots
· computes marginal beliefs about robot’s state occupation
· sends appropriates messages to other robots.

• If inference does not converge, Run standard FB on disconnected state
chains.

• Compute marginal beliefs

– Perform an M-step to update parameters

In rare cases, when LBP fails to converge, we may make some further approx-
imations. (However, in all of the examples presented here this never occurred.) It
is possible to employ ”damped” versions of LBP [8] which often converge empir-
ically, or resort to more tedious and slow double-loop algorithms that are always
guarantee to converge [6]. However, it is generally believed that the accuracy of
the answers returned by these damped or double-loop algorithms in cases where
regular LBP has trouble converging may be quite poor. In more complex exam-
ples when LBP failed to converge, we simply ignore all robot interactions for one
iteration, and just run the standard forward-backward (FB) recursions on the
disconnected state chains in parallel. We then perform an M-step as usual and
return to loopy propagation at the next inference step.

6 Experimental Results

We experimented with single and multiple robots in a 15x15 grid world using
simulated logs from 3 continuous valued and 1 binary valued sensor. The func-
tions defining the 3 continuous sensors were generated at random using mixtures
of small numbers of Gaussians. The binary sensor measures contact with the wall
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(world edge), using the output model P (ywall = 1|st = i) = 1 − ε if i is a wall
state and zero if i is not a wall state. In our simulations, ε = 0.1 Smooth,
continuous trajectories of nonconstant velocity were generated and sampled at
regular time intervals. The values of the 3 sensors at these continuous positions
and discrete times was corrupted with Gaussian noise of standard deviation 0.1,
with the scale of sensor readings being from 0 to 1. (In our experiments we as-
sumed that the output model for the binary sensor only was known to the robot:
in effect this lets the robot guess when it has reached the limits of the region
it is exploring, although it does not know which of the four wall it might be
contacting.)

Figure 7 (top panel) shows the true sensor maps for the continuous sensors,
along with a subsequence of one continuous trajectory. It also shows the state
discretization of the world as dotted lines. In total, we generated 4 sequences of
2500 noisy observations where each observation consisted of 3 continuous valued
and 1 binary valued sensor (fig 1).

Figure 7 (second from top panel) shows the results of applying our SLAS al-
gorithm assuming that these 4 sequences were generated by 4 separate excursions
by a single robot (or 4 excursions by non-interacting robots). The reconstructed
maps have been flipped vertically for the display, since of course the algorithm
cannot recover absolute orientation. (Of course the sensor maps we estimate
are piecewise constant at the scale of the grid resolution; but graphically some
smoothing has also taken place when drawing the contour lines.)

The average RMS localization error between our reconstructed trajectories
(computed using Viterbi decoding in this case) and the true trajectories is only
1.02 times the grid size (averaged over all reconstructed trajectories). This im-
plies that, on average, we can estimate the agents’ locations to within our dis-
cretization error limit.

Figure 7 (middle panel) shows the results of applying our multi-SLAS algo-
rithm, assuming that the 4 trajectories were executed in two excursions by two
interacting robots. Notice that the same total amount of data is used, except for
the inclusion of the proximity sensors (in fact exactly the same data traces are
used, we just pretend they came from two robots instead of four). The proximity
signals were generated with probability 1 − δ if the true (continuous) positions
of the robots were within a distance of 1.0 grid units and with probability zero
otherwise. (Notice that this is a slightly different process than the one assumed
by the robots during inference.) In our experiments, δ = 0.1. This resulted in
proximity signals being observed at 3-5% of timesteps for each agent on average.
Keep in mind that the proximity signals for each robot are noisy and this noise
is independent; this means that at time t robot p may detect robot q but not
vice versa.

We can see that by trying to enforce consistency between the robots using
LBP, our approximate algorithm improves the survey map as well as the trajec-
tory reconstructions as compared to exact inference without interaction signals.
(The RMS position error in this case went down to 0.81.)
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True Maps

Sensor 1 Sensor 2 Sensor 3

One Robot

Two Robots

Four Robots

Fig. 7. Display of the true three (left to right) maps of sensor readings along with the
part of the true trajectory taken by the robot (top panel), reconstructed maps with
inferred trajectories for one (second), two (third) and four (bottom) robots. The ”o”s
indicate the time slices when the true observation was taken, and ”x”s indicate the
inferred path taken by the robot.
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Finally, Figure 7 (bottom panel) shows the results of running our multi-
SLAS algorithm assuming four robots navigated the space simultaneously. The
pairwise proximity signals were generated as above. In this case, the survey and
trajectory reconstructions have further improved. (RMS position error is 0.76.)
Because there were more agents, the graph in this case contains proximity signals
at 10-12% of the timesteps.

7 Discussion & Conclusions

In this paper, we have presented a variety of algorithms for solving the simul-
taneous surveying and localization problem when an unknown environment is
explored by multiple interacting agents. Although a simple discretization of the
world leads to a tractable constrained HMM architecture in the case of a single
agent, multiple interacting agents cause exact learning and inference to become
exponentially expensive. Rather than ignoring interactions, we have derived an
efficient approximate multi-agent inference algorithm for this architecture based
on Loopy Belief Propagation. Although our algorithm does not perform exact
inference, we have shown on simple grid world experiments that its performance
– both in terms of survey parameters and localization – is superior to performing
exact inference while ignoring agent interactions. Other approximate inference
methods, especially those based on applying particle filters [1], have been ap-
plied to mobile robotics, but this work has focused on mapping occupancy grids
(SLAM), and on the single agent setting.

One particularly intriguing byproduct of our learning algorithm is that the
intermediate state marginals Γ (i) =

∑R
r=1

∑T
t=1 γr

t (i) contain the estimated oc-
cupancy numbers for each grid state. These estimates can potentially be used
for traditional mapping (SLAM): states with very low occupation numbers likely
correspond to inaccessible regions. Also, these values could be returned as feed-
back signals to the control algorithm driving the robots to indicate which areas
of the world need to be explored further, in the consensus opinion of all agents.
Figure 8 displays this statistic for single-robot, two-robot and four-robot ex-
periments using the same data as in the other experiments. It is interesting to
note that the map and trajectory reconstruction are inaccurate precisely in areas
where we think we are most uncertain about the world according to Γ .

For localization with a single agent, we have also investigated a continuous
trajectory representation which avoids the need to discretize the world. In this
setting we have successfully employed the embedded HMM architecture as an op-
timizer and found that it achieves excellent localization results avoiding both the
computational cost and the discretization performance limit of our constrained
HMMs.

We are currently developing SLAS algorithms based on the discretization-
free continuous representation and using the embedded HMM optimizer. We are
particularly interested in possible extensions to the multiple robots case both for
localization and for multi-SLAS. Ultimately, we hope to apply these algorithms
to real data from teams of mobile agents, for example planetary rovers.
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Fig. 8. Display of uncertainty about the current state distribution for 1 robot (left),
2 robots (middle), and 4 robots(right). The uncertainty is measured by Γ . For visual-
ization purposes we display 1/Γ , so white cells correspond to the states which robots
are most uncertain about.
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Hex: Dynamics and Probabilistic Text Entry
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Abstract. We present a gestural interface for entering text on a mobile device
via continuous movements, with control based on feedback from a probabilistic
language model. Text is represented by continuous trajectories over a hexagonal
tessellation, and entry becomes a manual control task. The language model is
used to infer user intentions and provide predictions about future actions, and
the local dynamics adapt to reduce effort in entering probable text. This leads to
an interface with a stable layout, aiding user learning, but which appropriately
supports the user via the probability model. Experimental results demonstrate
that the application of this technique reduces variance in gesture trajectories, and
is competitive in terms of throughput for mobile devices. This paper provides a
practical example of a user interface making uncertainty explicit to the user, and
probabilistic feedback from hypothesised goals has general application in many
gestural interfaces, and is well-suited to support multimodal interaction.

1 Introduction

Text entry is an important part of all human computer interfaces, and is particularly im-
portant for communication between humans via computer. However, entry on mobile
devices can be problematic compared to established keyboard-based desktop systems.
The restricted size and reduced processing power of mobile devices, and the changing
contexts in which the devices are used are all obstacles to efficient text entry. Current ap-
proaches include virtual keyboards [1], handwriting recognition [2], and gesture-based
interfaces; the latter is of interest here.

Various interfaces for gestural text entry have been devised, including fixed layout
approaches such as [3] and [4], and dynamic layout approaches, as in Dasher [5] and in
[6]. Of these, only the latter systems support a probabilistic model for increasing accu-
racy and throughput. Support for a probabilistic model is vital for optimal performance;
in particular the best use of the limited bandwidth available can be made only if the
uncertainty in language is adequately represented.

Systems that dynamically optimize letter layouts can impair learning, as the con-
stantly changing interface lacks the stability needed to learn to perform automatic move-
ments. Although initial learning times may be very short, the transition from a novice to
an expert user is often slow or impossible. At the novice level, the user is totally depen-
dent on feedback, while at an expert level, control is more open-loop with rapid, learned
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responses producing desired control actions. If the configuration changes significantly
with varying contexts, learning and producing such automatic high-speed responses is
more difficult.

In this paper, we describe a system which uses continuous gestures to produce
text. The handling qualities of the system are dynamically altered according to a time-
varying probability model. The gestures for letter sequences remain stable, supporting
user learning and high-speed, open-loop gesturing. However, the changing control prop-
erties reduce the effort required to choose highly probable sequences, and so there is a
direct relation between the information content of a sequence and the effort that must
be expended by the user.

2 Design

2.1 Layout

Each symbol is coded as a pair of primitive gestures, these “gestures” being movements
in one of six directions, allowing thirty-six symbols. Such a division leads to a hexago-
nal layout, with two stages: selecting a letter group and selecting a letter. As hexagons
form a regular tiling, gestures for letter sequences are represented as paths through
such a plane (see Figure 1). Recognition involves selecting points in space such that
the Voronoi tessellation (using the L2 norm) is hexagonal. Crossing cell boundaries in
this tessellation triggers transitions in a finite-state model, which outputs symbols in
response.

Fig. 1. The hexagonal layout. Each letter is assigned to a group, within which it is
associated with a particular edge. In this example, producing “o” requires an upwards
then up-right movement.

2.2 Control

The interface can be controlled with a number of input devices; mice and accelerom-
eters are used in the prototypes presented here. The tessellation must be effectively
unbounded to permit all combinations of symbols to be entered, and so input deflec-
tion is mapped to velocity allowing apparently infinite range of movement. A nonlinear



Hex: Dynamics and Probabilistic Text Entry 335

(a) of (b) was (c) be (d) we

(e) little (f) am (g) take (h) side

Fig. 2. Eight common English words, and paths through the hexagonal space that will
produce them. These paths are generated via cubic splines (see Section 2.5)

.

transfer function, with a dead-zone around zero (see [7]) is used to help stabilize the
control.

The handling qualities of the system are manipulated by simulating a nonlinear
landscape on the selection plane. The local system dynamics are altered by a vector
force-field which is computed from the current probabilities. This field is conditioned
on the current context, where the context may include position, velocity, acceleration,
and the probability of a letter given the current prefix. Given the state x of the system,
we have

ẋ = A(c)x + B(c)u (1)

where u is the control action, and A(c) and B(c) are context-varying state and control
matrices, conditioned on the context c.

The force vectors require greater control effort on the part of the user to move into
low probability areas; this can be thought of as a system of hills and valleys guiding the
user away from improbable regions of the state space.

Given six discrete probabilities for each possible transition, p1, .., p6, the force at
any point is given by a function with squared-exponential decay from the vertices. Each
force is applied from the two vertices which form the boundary across which the tran-
sition can occur. The magnitude of the force applied at each point is given by:
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f =
k

2

∑
i,j

e
d(vi(j))

2

s pi (2)

where d(vi(j)) is the Euclidean distance from the jth (j = 1..2) vertex of the ith (i =
1..6) edge, k is a constant scaling the magnitude of the forces, and s is a constant
specifying the width of the density around the vertex.

An example landscape is shown in Figure 3, after “q” has been entered, which shows
the deep valley towards the letter group containing “u”.

In addition to this field, fixed forces are applied at the vertices, repelling the user
from these points. This limits ambiguous transitions, and forces the user to make a con-
scious choice at these decision points. These forces are applied as above, having squared
exponential decay, but with constant magnitude. The forces act along the direction from
the user to the vertex, avoiding the slingshot effect that would occur if the forces were
normal to the density.
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Fig. 3. The vector field (right) produced after the letter “q” is entered, and its magnitude,
shown as the surface plot on the left. The group boundary leading to “u” is at the top of
these diagrams.

2.3 Probability Model

A simple language model (based upon partial predictive matching, see [8, 9]) is used to
produce p(letter|prefix) (referred to as p(l|pr)) on a per-word basis. A tree with proba-
bility information is generated from a corpus (in this case texts from Project Gutenberg
[10]). For simplicity, no grammar or word-level model is used, although this would be
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likely to improve performance significantly [11]. More complex language models can
easily be incorporated in this framework.

The probability model is extended to include the dynamics of the cursor. The veloc-
ity and acceleration of the cursor are numerically estimated. The probability of heading
into a hexagon is then given by

cos θ + 1
2

, (3)

where θ is the angle between the movement vector and the center of the hexagon being
tested. The probability of each hexagon is given by

p(h) = p(h|pr)p(h|v)p(h|a). (4)

If a transition into hexagon h represents a single letter lh then

p(h|pr) = p(lh|pr), (5)

otherwise

p(h|pr) =
6∑

i=1

p(lhi|pr), (6)

where lhi is the ith letter in the letter group selected by a transition into h.

2.4 Autocompletion and Prediction

Potential autocompletions can be predicted using Monte-Carlo sampling. Starting from
the current prefix a potential symbol is selected randomly, weighted according to p(l).
This letter is concatenated to the prefix, and the process repeated until the end-of-word
symbol is produced. The probability of the sequence is evaluated as a by-product of this
process.

Each of these word/probability pairs is stored in a list ranked by probability. The
sampling is repeated k times, with k ≈ 300 in the current implementations. The top
autocompletion is then presented, and the autocomplete action can be initiated either by
a specific button press (in the case of a mouse) or a simple shake gesture (for orientation
sensors).

The display can show the path which would generate the current autocomplete
possibilities. Fitting a cubic spline through the medians (the centers of edges) of the
hexagons gives a smooth path which will generate a given letter sequence. Displaying
these splines for the top autocompletes shows the paths of possible completions, giv-
ing a background awareness of the “word density” at any point in state space. It also
facilitates the learning of smooth trajectories for words. We are currently extending this
feedback to an audio display, based on ideas we presented in [12], where we describe
a system for audio display of time-varying probabilities. The use of audio is important
for mobile devices, where screen space is at a premium, and users visual load is often
already high.
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2.5 Layout Optimization

The layout used in preceding examples was chosen to aid learning , by grouping letters
in a logical manner (such as grouped vowels). Given a source corpus, it is possible
to optimize the layout to minimize some cost function, given a model of the user’s
movement. The cost of a particular layout is

ct =
n∑

i=1

p(wi)c(wi) (7)

where n is the number of words in the dictionary, and c is the cost for each word. For
the sake of computational efficiency implementations prune the cost evaluation, letting
n be the top ranked few hundred words from the corpus.

The cost function used should minimize some aspect of effort on the part of the
user; here we penalize the sum of squared j-th derivatives of the trajectory representing
the word, i.e we have:

c(wi) =
∫ t

0

(
αj

(
djx

dtj

)2

+ βj

(
djy

dtj

)2
)

dt. (8)

In the implementations the third derivative is penalized. This is based on a minimum-
jerk model [13], in contrast to the linear-segment model proposed in [14]. Finally, a
model of the user’s movement is required; we approximate it with a cubic spline path.
This simple approximation is justified experimentally in Section 3.1. We then numeri-
cally optimize the layout to minimize ct.

2.6 Implemenations

The system has been implemented running on a desktop PC with a mouse and with
an InterTrax accelerometer, and on the PocketPC platform with an accelerometer (see
Figure 4).

3 Results

In throughput testing, one of the authors achieved around 10–12 words per minute with
earlier versions of the system. This is the rate for perfect transcription of a hundred
words of written text (rather than groups of five characters per minute), including error-
correction time. In this case, the user had around 30 hours of use with the layout used
for the test. Speeds of around 17wpm are achievable with current versions, for free-
form text entry. It should be borne in mind that the layout used for these tests was not
optimized (see Section 2.5).

3.1 Spatial Effects

Figure 5 shows twenty trajectories for the word “hello”, as performed by one of the au-
thors as force model is adjusted. The four experimental conditions are: forces applied as
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Fig. 4. The system running on Cassiopeia E115 with a miniature accelerometer

previously described; forces not applied; forces applied with double magnitude; forces
applied as normal but with probabilities inverted.

Also shown is a cubic spline fit through the medians of the hexagons. It is apparent
that the spline fit is a reasonable approximation; the cubic spline is within the distri-
bution of points on the trajectory for most of the path. Exceptions occur at significant
decision points where the user follows a less constrained path.

The intention of the force model is to increase accuracy and speed in performance.
If the hypothesis that accuracy would increase is to be verified, then the distribution of
the trajectories should be narrower for the cases where forces are present than when
they are not. This can be seen when comparing Figure 5(a) (no forces) with Figure
5(b) (with forces). Increasing the forces should amplify these effects; this is apparent in
Figure 5(c).

To illustrate the effect of the choice of language model on the performance of the
system, Figure 5(d) shows the result of inverting the probabilities in the language model
(p becomes 1 − p). This results in a significant increase in the deviation from the ideal
path, particularly towards the end when the model is confident of its predictions, and so
is opposing most strongly. The vertex and friction forces are as in the other tests, and
so all changes of performance can be attributed to the change in the language model.

3.2 Temporal Effects

The right-hand panel in Figure 5 shows the effect of the forces on the timing of the ges-
ture. Without forces applied (Figure 5(b)) the path is smooth, without any significant
pauses or accelerations (except at the start). The two runs with forces applied normally
and at double strength show a strongly periodic movement. This periodicity is signif-
icantly diminished in the example with inverted forces, even though the forces are of
the same magnitude as Figure 5(a). This enforced periodicity may be due either to a
change in the control strategy pursued by the human, or may simply be a by-product of
the changing system dynamics; more testing will be required to separate these issues.
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(a) No forces applied

(b) Forces applied as described previously

(c) Forces with double magnitude

(d) Forces with probabilities inverted

Fig. 5. Trajectories from twenty repetitions of the gesture for “hello” with varying
forces. On the left panel, dashed lines show measured trajectories, circles indicate the
centers and medians of the hexagons, and the solid line indicates a cubic spline fit
through the medians. The right panel shows a density plot produced by summing each
of the data points, after convolving with a smoothing window, onto a mesh (higher den-
sity areas are lighter). When velocity is lower the local density will increase, assuming
equal path density.
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Whichever is the case, it is a potentially powerful feature. A periodic interface al-
lows for task interleaving; this is important for mobile devices where interaction may be
occurring while occasional attention is required elsewhere. The periodicity of motion
may be a useful metric for estimating performance in an adaptive system – it seems
possible that confident users will produce more regularly timed movements than users
who are relying more heavily on feedback control. Rhythmic movement can also be of
use in feedback presentation, particularly in the audio modality, allowing for structured
output which requires less constant attention.

4 Conclusions

We have created a text entry system based on continuous gestures performed on a reg-
ular tessellation, and demonstrated how dynamically altering the handling qualities of
the system given a probabilistic model of context can improve performance. Testing
shows that the variance of trajectories for probable sequences can be reduced using this
method. Further systematic user trials will be required to establish the effects at the
various stages of learning.

This control-based approach supports users without constraining them, resisting low
probability actions but not preventing them. This creates a correspondence between the
information content of a sequence and the expenditure of energy on the part of the
user. It also facilitates a smooth transition from unskilled, feedback-dependent users, to
skilled users performing automatic, open-loop movements.

Our system uses the probability of the hypothesised goals compatible with the cur-
rent context, to provide feedback directly to the user or by adapting the local dynam-
ics of interaction. This is a general technique of interest to the whole area of gesture-
interface design, improving throughput and supporting exploration and learning in new
users.
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